Skip to main content
×
×
Home

BOUT++: Recent and current developments

  • B. D. Dudson (a1), A. Allen (a1), G. Breyiannis (a2), E. Brugger (a3), J. Buchanan (a4), L. Easy (a1) (a4), S. Farley (a5), I. Joseph (a3), M. Kim (a6), A. D. McGann (a1), J. T. Omotani (a4), M. V. Umansky (a3), N. R. Walkden (a1) (a4), T. Xia (a3) (a7) and X. Q. Xu (a3)...
Abstract

BOUT++ is a 3D nonlinear finite-difference plasma simulation code, capable of solving quite general systems of Partial Differential Equations (PDEs), but targeted particularly on studies of the edge region of tokamak plasmas. BOUT++ is publicly available, and has been adopted by a growing number of researchers worldwide. Here we present improvements which have been made to the code since its original release, both in terms of structure and its capabilities. Some recent applications of these methods are reviewed, and areas of active development are discussed. We also present algorithms and tools which have been developed to enable creation of inputs from analytic expressions and experimental data, and for processing and visualisation of output results. This includes a new tool Hypnotoad for the creation of meshes from experimental equilibria. Algorithms have been implemented in BOUT++ to solve a range of linear algebraic problems encountered in the simulation of reduced Magnetohydrodynamics (MHD) and gyro-fluid models: A preconditioning scheme is presented which enables the plasma potential to be calculated efficiently using iterative methods supplied by the PETSc library (the Portable, Extensible Toolkit for Scientific Computation) (Balay et al. 2014), without invoking the Boussinesq approximation. Scaling studies are also performed of a linear solver used as part of physics-based preconditioning to accelerate the convergence of implicit time-integration schemes.

Copyright
Corresponding author
Email address for correspondence: benjamin.dudson@york.ac.uk
References
Hide All
Aho, A. V., Lam, M. S., Sethi, R. and Ullman, J. D. 2006 Compilers: Principles, Techniques, and Tools, Addison-Wesley.
Angus, J. R. and Umansky, M. V. 2014 Phys. Plasmas 21, 012 514.
Angus, J. R., Umansky, M. V. and Krasheninnikov, S. I. 2012a 3d blob modelling with bout++. Contrib. Plasma Phys. 52, 348352.
Angus, J. R., Umansky, M. V. and Krasheninnikov, S. I. 2012b Effect of drift waves on plasma blob dynamics. Phys. Rev. Lett. 108, 215 002.
Austin, T. M., Berndt, M. and Moulton, J. D. 2004 Technical Report LA-UR 03-4149. LANL, USA.
Balay, S., Gropp, W. D., McInnes, L. C. and Smith, B. F. 1997 In: Modern Software Tools in Scientific Computing (ed. Arge, E., Bruaset, A. M. and Langtangen, H. P.). Birkhauser Press, pp. 163202.
Balay, S. et al. 2010 Technical Report ANL-95/11 - Revision 3.1. Argonne National Laboratory.
Balay, S. et al. 2014 PETSc Web page. http://www.mcs.anl.gov/petsc.
Beer, M. A. et al. 1997 Phys. Plasmas 4 (5), 17921799.
Catto, P. J. and Simakov, A. N. 2004 A drift ordered short mean free path description for magnetized plasma allowing strong spatial anisotropy. Phys. Plasmas 11 (1), 90102.
Chacón, L., Knoll, D. A. and Finn, J. M. 2002 J. Comput. Phys. 178 (1), 1536.
Dimits, A. M., Joseph, I. and Umansky, M. V. 2013 A fast non-Fourier method for Landau-fluid operators. Phys. Plasmas 21 (5), 055 907.
D'Ippolito, D. A., Myra, J. R. and Zweben, S. J. 2011 Phys. Plasmas 18, 060 501.
Dudson, B., Farley, S. and Curfmann McInnes, L. 2012 arXiv:1209.2054.
Dudson, B. D. et al. 2009 Comput. Phys. Commun. 180, 14671480.
Friedman, B., Carter, T. A., Umansky, M. V., Schaffner, D. and Dudson, D. 2012 Phys. Plasmas 19, 102 307.
Fundamenski, W et al. 2001 J. Nucl. Mater. 290–293, 593.
Gamma, E., Helm, R., Johnson, R. and Vlissides, J. 1995 Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley.
Garcia, O. E. et al. 2007 J. Nucl. Mater. 363, 575.
Gekelman, W. et al. 1991 Rev. Sci. Instrum. 62, 2875.
Gendrih, Ph et al. 2012 J. Phys.: Conf. Ser. 401, 012 007.
General Atomics 2014 G EQDSK file format. https://fusion.gat.com/theory/Efitgeqdsk.
Golub, G. H. and Van Loan, C. F. 2013 Matrix Computations, The Johns Hopkins University Press.
Goswami, R. et al. 2001 Phys. Plasmas 8, 857.
Hammett, G. W. and Perkins, F. W. 1990 Phys. Rev. Lett. 64, 3019.
Hazeltine, R. D. and Meiss, J. D. 2003 Plasma Confinement, Dover publications.
Heroux, M. A. et al. 2005 ACM Trans. Math. Softw. 31 (3), 397423.
Hindmarsh, A. C. 1983 Scientific Computing, (ed. Stepleman, R. S. et al.). (IMACS Transactions on Scientific Computation, 1). Amsterdam: North-Holland, pp. 5564.
Hindmarsh, A. C. et al. 2005 SUNDIALS: suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Softw. 31 (3), 363396.
Hockney, R. W. 1965 J. Assoc. Comput. Mach. 12, 95.
Iserles, A. 2009 A First Course in the Numerical Analysis of Differential Equations, Cambridge University Press, ISBN: 978-0-521-73490-5.
Ji, J. Y., Held, E. D. and Sovinec, C. R. 2009 Phys. Plasmas 16 (2), 022 312.
Jones, E. et al. 2001 – SciPy: open source scientific tools for Python.
Karniadakis, G. E., Israeli, M. and Orszag, S. A. 1991 J. Comput. Phys. 97, 414.
Kawashima et al. 2006 Plasma Fusion Res. 1, 31.
Knepley, M. G. 2012 arXiv:1209.1711.
Knoll, D. A. et al. 2001 SIAM J. Sci. Comput. 23 (2), 381.
Lao, L. L., St. John, H., Stambaugh, R. D., Kellman, A. G. and Pfeiffer, W. 1985 Reconstruction of current profile parameters and plasma shapes in tokamaks. Nucl. Fusion 25, 1611–22.
Lao, L. L. et al. 2005 MHD equilibrium reconstruction in the DIII-D tokamak. Fusion Sci. Technol. 48, 968.
LLVM Project 2014 Implementing a language with LLVM. http://llvm.org/docs/tutorial/.
Ma, J. F., Xu, X. Q. and Dudson, B. D. 2014 54, 033 011.
Marchand, R. and Dumberry, M. 1996 CARRE: a quasi-orthogonal mesh generator for 2D edge plasma modelling. Comput. Phys. Commun. 96, 232246.
Mousseau, V. A., Knoll, D. A. and Rider, W. J. 2000 J. Comput. Phys. 160, 743.
Nakamura, M. 2011 J. Nucl. Mater. 415, S553.
Naulin, V. et al. 2007 J. Nucl. Mater. 24, 363365.
Omotani, J. T. and Dudson, B D 2013 Plasma Phys. Control. Fusion 55, 055 009.
Ottaviani, M. and Manfredi, G 1999 Phys. Plasmas 6, 3267.
Park, S and Schowengerdt, R 1983 Comput. Vis., Graph. and Image Process. 23, 256.
Radhakrishnan, K. and Hindmarsh, A. C. 1993 Technical Report. LLNL, http://computation.llnl.gov/casc/nsde/pubs/u113855.pdf.
Ricci, P. et al. 2012 Plasma Phys. Control Fusion 54, (124 047).
Ricci, P. and Rogers, B. N. 2013 Phys. Plasmas 20, 010, 702.
Roache, P. J. 1998 Verification and Validation in Computational Science and Engineering, Albuquerque NM: Hermosa Publishers.
Rognlien, T. D. et al. 1992 J. Nucl. Mater. 196–198, 347.
Rognlien, T. D., Xu, X. Q. and Hindmarsh, A. C. 2002 Application of parallel implicit methods to edge-plasma numerical simulations. J. Comput. Phys. 175, 249268.
Salari, K. and Knupp, P. 2000 Code verification by the method of manufactured solutions. Technical Report. SAND2000-1444. Sandia National Laboratories.
Schneider, R. et al. 2006 Contrib. Plasma Phys. 46, 3191.
Scott, B. 2003 Plasma Phys. Control Fusion 45, A385–398.
Scott, B. 2005a Phys. Plasmas 12, 102 307.
Scott, B. D. 2002 New J. Phys. 4, 52.152.30.
Scott, B. D. 2005b GEM - an energy conserving electromagnetic gyrofluid model. arXiv:physics/0501124.
Stangeby, P. C. 2000 The Plasma Boundary of Magnetic Fusion Devices, IoP.
Tamain, P. et al. 2010 TOKAM-3D: a 3D fluid code for transport and turbulence in the edge plasma of Tokamaks. J. Comput. Phys. 229 (2), 361378.
Tarditi, A. et al. 1996 Contrib. Plasma Phys. 36, 132.
Temperton, C. 1975 Algorithms for the solution of cyclic tridiagonal systems. J. Comput. Phys. 19 (3), 317323.
Tskhakaya, D. 2012 Contrib. Plasma Phys. 52 (5–6), 490499.
Tskhakaya, D., Subba, F., Bonnin, X., Coster, D. P., Fundamenski, W., Pitts, R. A. and Contributors, JET EFDA 2008 On kinetic effects during parallel transport in the sol. Contrib. Plasma Phys. 48 (1–3), 8993.
Umansky, M. V., Rognlien, T. D., Xu, X. Q., Dudson, B. D. and Kirk, A. 2006 Modelling of edge plasma turbulence in a spherical tokamak.
Walkden, N. R., Dudson, B. D. and Fishpool, G. 2013 Characterization of 3d filament dynamics in a mast sol flux tube geometry. Plasma Phys. Control Fusion 55, 105 005.
Wesson, J. A., ed. 1997 Tokamaks, 2nd edn. Clarendon Press.
Wolfram Research, Inc. 2014 Mathematica. Champaign, Illinois.
Xi, P. W., Xu, X. Q., Xia, T. Y., Nevins, W. M. and Kim, S. S. 2013 53 (11), 113 020.
Xia, T. Y., Xu, X. Q., Dudson, B. D. and Li, J. 2012 Contrib. Plasma Phys. 52, 353359.
Xu, X. et al. 2013 Phys. Plasmas 20, 056 113.
Xu, X. Q., Cohen, R. H., Porter, G. D., Myra, J. R., D'Ippolito, D. A. and Moyer, R. 1999 Turbulence in boundary plasmas. J. Nucl. Mater. 266–269, 993996.
Xu, X. Q., Cohen, R. H., Porter, G. D., Rognlien, T. D., Ryutov, D. D., Myra, J. R., D'Ippolito, D. A., Moyer, R. A. and Groebner, R. J. 2000 Turbulence studies in tokamak boundary plasmas with realistic divertor geometry. Nucl. Fusion 40 (3Y), 731736.
Xu, X. Q., Umansky, M. V., Dudson, B. and Snyder, P. B. 2008 Boundary plasma turbulence simulations for tokamaks. Commun. Comput. Phys. 4 (5), 949979.
Xu, X. Q. et al. 2010 Phys. Rev. Lett. 105, 175 005.
Yu, G. Q., Krasheninnikov, S. I. and Guzdar, P. N. 2006 Phys. Plasmas 13, 042 508.
Zohm, H. 1996 Plasma Phys. Control Fusion 38, 105128.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Plasma Physics
  • ISSN: 0022-3778
  • EISSN: 1469-7807
  • URL: /core/journals/journal-of-plasma-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed