Skip to main content
×
×
Home

Charged particle dynamics in multiple colliding electromagnetic waves. Survey of random walk, Lévy flights, limit circles, attractors and structurally determinate patterns

  • S. V. Bulanov (a1), T. Zh. Esirkepov (a1), J. K. Koga (a1), S. S. Bulanov (a2), Z. Gong (a3), X. Q. Yan (a3) (a4) and M. Kando (a1)...
Abstract

The multiple colliding laser pulse concept formulated by Bulanov et al. (Phys. Rev. Lett., vol. 104, 2010b, 220404) is beneficial for achieving an extremely high amplitude of coherent electromagnetic field. Since the topology of electric and magnetic fields of multiple colliding laser pulses oscillating in time is far from trivial and the radiation friction effects are significant in the high field limit, the dynamics of charged particles interacting with the multiple colliding laser pulses demonstrates remarkable features corresponding to random walk trajectories, limit circles, attractors, regular patterns and Lévy flights. Under extremely high intensity conditions the nonlinear dissipation mechanism stabilizes the particle motion resulting in the charged particle trajectory being located within narrow regions and in the occurrence of a new class of regular patterns made by the particle ensembles.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Charged particle dynamics in multiple colliding electromagnetic waves. Survey of random walk, Lévy flights, limit circles, attractors and structurally determinate patterns
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Charged particle dynamics in multiple colliding electromagnetic waves. Survey of random walk, Lévy flights, limit circles, attractors and structurally determinate patterns
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Charged particle dynamics in multiple colliding electromagnetic waves. Survey of random walk, Lévy flights, limit circles, attractors and structurally determinate patterns
      Available formats
      ×
Copyright
Corresponding author
Email address for correspondence: bulanov.sergei@qst.go.jp
References
Hide All
Abramovitz M. & Stegun I. A.(Eds) 1964 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover.
Arnol’d V. I. 1989 Mathematical Methods of Classical Mechanics. Springer.
Bashinov A., Kim A. & Sergeev A. 2015 Impact of quantum effects on relativistic electron motion in a chaotic regime. Phys. Rev. E 92, 043105.
Bashinov A. V. & Kim A. V. 2013 On the electrodynamic model of ultra-relativistic laser–plasma interactions caused by radiation reaction effects. Phys. Plasmas 20, 113111.
Bashinov A. V., Kumar P. & Kim A. V.2016 Particle dynamics and spatial e- e+ density structures at qed cascading in circularly polarized standing waves. arXiv:1610.08847.
Bassett I. M. 1986 Limit to concentration by focusing. Optica Acta: Intl J. Optics 33, 279286.
Bauer D., Mulser P. & Steeb W. H. 1995 Relativistic ponderomotive force, uphill acceleration, and transition to chaos. Phys. Rev. Lett. 75, 46224625.
Bell A. R. & Kirk J. G. 2008 Possibility of prolific pair production with high-power lasers. Phys. Rev. Lett. 101, 200403.
Beresteskii V. B., Lifshitz E. M. & Pitaevskii L. P.(Eds) 1982 Quantum Electrodynamics. Pergamon.
Boca M. & Florescu V. 2009 Nonlinear Compton scattering with a laser pulse. Phys. Rev. A 80, 053403.
Bolotovskii B. M. & Voskresenskii G. V. 1966 Diffraction radiation. Sov. Phys. Uspekhi 9, 7396.
Brady C. S., Ridgers C. P., Arber T. D., Bell A. R. & Kirk J. G. 2012 Laser absorption in relativistically underdense plasmas by synchrotron radiation. Phys. Rev. Lett. 109, 245006.
Bulanov S. S., Esirkepov T., Koga J., Thomas A. G. R. & Bulanov S. V. 2010a Schwinger limit attainability with extreme power lasers. Phys. Rev. Lett. 105, 220407.
Bulanov S. S., Mur V. D., Narozhny N. B., Nees J. & Popov V. S. 2010b Multiple colliding electromagnetic pulses: a way to lower the threshold of e+ e- pair production from vacuum. Phys. Rev. Lett. 104, 220404.
Bulanov S. S., Narozhny N. B., Mur V. D. & Popov V. S. 2004a On e+ e- pair production by colliding electromagnetic pulses. J. Expl Theor. Phys. Lett. 80, 382385.
Bulanov S. S., Narozhny N. B., Mur V. D. & Popov V. S. 2006 Electron–positron pair production by electromagnetic pulses. J. Expl Theor. Phys. 102, 923.
Bulanov S. S., Schroeder C. B., Esarey E. & Leemans W. P. 2013 Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses. Phys. Rev. A 87, 062110.
Bulanov S. V. 2017 Magnetic reconnection: from MHD to QED. Plasma Phys. Control. Fusion 59, 014029.
Bulanov S. V., Esirkepov T. Zh., Hayashi Y., Kando M., Kiriyama H., Koga J. K., Kondo K., Kotaki H., Pirozhkov A. S., Bulanov S. S. et al. 2011a On the design of experiments for the study of extreme field limits in the interaction of laser with ultrarelativistic electron beam. Nucl. Instrum. Meth. Phys. Res. A 660, 3142.
Bulanov S. V., Esirkepov T. Zh., Kando M., Koga J., Kondo K. & Korn G. 2015 On the problems of relativistic laboratory astrophysics and fundamental physics with super powerful lasers. Plasma Phys. Rep. 41, 151.
Bulanov S. V., Esirkepov T. Zh., Kando M., Koga J. K. & Bulanov S. S. 2011b Lorentz–Abraham–Dirac versus Landau–Lifshitz radiation friction force in the ultrarelativistic electron interaction with electromagnetic wave (exact solutions). Phys. Rev. E 84, 056605.
Bulanov S. V., Esirkepov T. Zh., Koga J. & Tajima T. 2004b Interaction of electromagnetic waves with plasma in the radiation-dominated regime. Plasma Phys. Rep. 30, 196213.
Chang H. X., Qiao B., Xu Z., Xu X. R., Zhou C. T., Yan X. Q., Wu S. Z., Borghesi M., Zepf M. & He X. T. 2015 Generation of overdense and high-energy electron–positron-pair plasmas by irradiation of a thin foil with two ultraintense lasers. Phys. Rev. E 92, 053107.
Corvan D. J., Zepf M. & Sarri G. 2016 A high-energy, high-flux source of gamma-rays from all-optical non-linear Thomson scattering. Nucl. Instrum. Meth. Phys. Res. A 829, 291300.
Di Piazza A. 2008 Exact solution of the Landau–Lifshitz equation in a plane wave. Lett. Math. Phys. 83, 305315.
Di Piazza A., Hatsagortsyan K. Z. & Keitel C. H. 2010 Quantum radiation reaction effects in multiphoton compton scattering. Phys. Rev. Lett. 105, 220403.
Di Piazza A., Muller C., Hatsagortsyan K. Z. & Keitel C. H. 2012 Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 84, 11771228.
Duclous R., Kirk J. G. & Bell A. R. 2011 Monte Carlo calculations of pair production in high-intensity laser–plasma interactions. Plasma Phys. Control. Fusion 53, 015009.
Durrett R. 1991 Probability. Theory and Examples. Wadsworth & Brooks/Cole.
Ehlotzky F., Krajewska K. & Kamiśki J. Z. 2009 Fundamental processes of quantum electrodynamics in laser fields of relativistic power. Rep. Prog. Phys. 72, 046401.
Elkina N. V., Fedotov A. M., Kostyukov I. Yu., Legkov M. V., Narozhny N. B., Nerush E. N. & Ruhl H. 2011 QED cascades induced by circularly polarized laser fields. Phys. Rev. STAB 14, 054401.
Erber T. 1966 High-energy electromagnetic conversion processes in intense magnetic fields. Rev. Mod. Phys. 38, 626659.
Esirkepov T. Zh., Bulanov S. S., Koga J., Kando M., Kondo K., Rosanov N. N., Korn G. & Bulanov S. V. 2015 Attractors and chaos of electron dynamics in electromagnetic standing waves. Phys. Lett. A 379, 20442054.
Esirkepov T. Zh. & Bulanov S. V.2017 Paradoxical stabilization of forced oscillations by strong nonlinear friction. arXiv:1702.01645.
Fedotov A. M., Elkina N. V., Gelfer E. G., Narozhny N. B. & Ruhl H. 2014 Radiation friction versus ponderomotive effect. Phys. Rev. A 90, 053847.
Fedotov A. M., Narozhny N. B., Mourou G. & Korn G. 2010 Limitations on the attainable intensity of high power lasers. Phys. Rev. Lett. 105, 080402.
Gales S., Balabanski D. L., Negoita F., Tesileanu O., Ur C. A., Ursescu D. & Zamfir N. V. 2016 New frontiers in nuclear physics with high-power lasers and brilliant monochromatic gamma beams. Phys. Scr. 91, 093004.
Gelfer E. G., Mironov A. A., Fedotov A. M., Bashmakov V. F., Nerush E. N., Kostyukov I. Yu. & Narozhny N. B. 2015 Optimized multibeam configuration for observation of qed cascades. Phys. Rev. A 92, 022113.
Gong Z., Hu R., Shou Y., Qiao B., Chen C., Xu F., He X. & Yan X. 2016 Radiation reaction induced spiral attractors in ultra-intense colliding laser beams. Matt. Radiat. Extremes 1, 308315.
Gong Z., Hu R. H., Shou Y. R., Qiao B., Chen C. E., He X. T., Bulanov S. S., Esirkepov T. Zh., Bulanov S. V. & Yan X. Q. 2017 High efficiency gamma-ray flash generation via multiple Compton scattering in ponderomotive potential well. Phys. Rev. E 95, 013210.
Gonoskov A., Bashinov A., Bastrakov S., Efimenko E., Ilderton A., Kim A., Marklund M., Meyerov I., Muraviev A. & Sergeev A.2016 Ultra-bright GeV photon source via controlled electromagnetic cascades in laser-dipole waves. arXiv:1610.06404v1 [physics.plasm-ph].
Gonoskov A., Bashinov A., Gonoskov I., Harvey C., Ilderton A., Kim A., Marklund M., Mourou G. & Sergeev A. 2014 Anomalous radiative trapping in laser fields of extreme intensity. Phys. Rev. Lett. 113, 014801.
Gonoskov A., Gonoskov I., Harvey C., Ilderton A., Kim A., Marklund M., Mourou G. & Sergeev A. 2013 Probing nonperturbative qed with optimally focused laser pulses. Phys. Rev. Lett. 111, 060404.
Gonoskov I., Aiello A., Heugel S. & Leuchs G. 2012 Dipole pulse theory: maximizing the field amplitude from 4 p focused laser pulses. Phys. Rev. A 86, 053836.
Grismayer T., Vranic M., Martins J. L., Fonseca R. A. & Silva L. O. 2016 Laser absorption via quantum electrodynamics cascades in counter propagating laser pulses. Phys. Plasmas 23, 056706.
Harvey C., Heinzl T. & Ilderton A. 2009 Signatures of high-intensity Compton scattering. Phys. Rev. A 79, 063407.
Harvey C., Heinzl T. & Marklund M. 2011 Symmetry breaking from radiation reaction in ultra-intense laser fields. Phys. Rev. D 84, 116005.
Heinzl T., Harvey C., Ilderton A., Marklund M., Bulanov S. S., Rykovanov S., Schroeder C. B., Esarey E. & Leemans W. P. 2015 Detecting radiation reaction at moderate laser intensities. Phys. Rev. E 91, 023207.
Heinzl T., Ilderton A. & Marklund M. 2010a Finite size effects in stimulated laser pair production. Phys. Lett. B 692, 250256.
Heinzl T., Seipt D. & Kämpfer B. 2010b Beam-shape effects in nonlinear Compton and Thomson scattering. Phys. Rev. A 81, 022125.
Ilderton A. & Torgrimsson G. 2013 Scattering in plane-wave backgrounds: infrared effects and pole structure. Phys. Rev. D 88, 025021.
Ji L. L., Pukhov A., Kostyukov I. Yu., Shen B. F. & Akli K. 2014 Radiation-reaction trapping of electrons in extreme laser fields. Phys. Rev. Lett. 112, 145003.
Jirka M., Klimo O., Bulanov S. V., Esirkepov T. Zh., Gelfer E., Bulanov S. S., Weber S. & Korn G. 2016 Electron dynamics and gamma- and e- e+ production by colliding laser pulses. Phys. Rev. E 93, 023207.
Kac M. 1961 Kilka zagadnien stochastycznych fizyki matematyki. Panstw. Wydaw. Nauk.
Kirk J. G. 2016 Radiative trapping in intense laser beams. Plasma Phys. Control. Fusion 58, 085005.
Koga J. K. 2004 Integration of the Lorentz–Dirac equation: interaction of an intense laser pulse with high-energy electrons. Phys. Rev. E 70, 046502.
Koga J. K., Esirkepov T. Zh. & Bulanov S. V. 2005 Nonlinear Thomson scattering in the strong radiation damping regime. Phys. Plasmas 12, 093106.
Koga J. K., Esirkepov T. Zh. & Bulanov S. V. 2006 Nonlinear Thomson scattering with strong radiation damping. J. Plasma Phys. 72, 13151318.
Krajewska K. & Kamiński J. Z. 2012 Breit–Wheeler process in intense short laser pulses. Phys. Rev. A 85, 062102.
Landau L. D. & Lifshitz E. M. 1976 Mechanics. Pergamon.
Landau L. D. & Lifshitz E. M.(Eds) 1982 The Classical Theory of Field. Pergamon.
Lehmann G. & Spatschek K. H. 2012 Phase-space contraction and attractors for ultrarelativistic electrons. Phys. Rev. E 85, 056412.
Lehmann G. & Spatschek K. H. 2016 Transient plasma photonic crystals for high-power lasers. Phys. Rev. Lett. 116, 225002.
Levy M. C., Blackburn T. G., Ratan N., Sadler J., Ridgers C. P., Kasim M., Ceurvorst L., Holloway J., Baring M. G., Bell A. R. et al. 2016 QED-driven laser absorption. arXiv:1609.00389v1 [physics.plasm-ph].
Lévy P. P. 1954 Théorie de l’addition des variables aléatoires, 2nd edn. Gauthier-Villars.
Liseykina T. V., Popruzhenko S. V. & Macchi A. 2016 Inverse Faraday effect driven by radiation friction. New J. Phys. 18, 072001.
Lobet M., Ruyer C., Debayle A., D’Humiéres E., Grech M., Lemoine L. & Gremillet L. 2015 Ultrafast synchrotron-enhanced thermalization of laser-driven colliding pair plasmas. Phys. Rev. Lett. 115, 215003.
Mackenroth F. & Di Piazza A. 2011 Nonlinear Compton scattering in ultrashort laser pulses. Phys. Rev. A 83, 032106.
Marklund M. & Shukla P. 2006 Nonlinear collective effects in photon–photon and photon–plasma interactions. Rev. Mod. Phys. 78, 591640.
Mathur M., Haller G., Peacock T., Ruppert-Felsot J. E. & Swinney H. L. 2007 Uncovering the Lagrangian skeleton of turbulence. Phys. Rev. Lett. 98, 144502.
Mendonca J. T. 1983 Threshold for electron heating by two electromagnetic waves. Phys. Rev. A 28, 35923598.
Metzler R., Chechkin A. V., Gonchar V. Yu. & Klafter J. 2007 Some fundamental aspects of Lévy flights. Chaos Solitons Fractals 34, 129142.
Metzler R. & Klafter J. 2000 The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 177.
Mourou G., Tajima T. & Bulanov S. V. 2006 Optics in the relativistic regime. Rev. Mod. Phys. 78, 309371.
Mourou G. A., Korn G., Sandner W. & Collier J. L.(Eds) 2011 ELI-Extreme Light Infrastructure Science and Technology with Ultra-Intense Lasers WHITEBOOK. THOSS Media GmbH.
Nakamura T., Koga J. K., Esirkepov T. Z., Kando M., Korn G. & Bulanov S. V. 2012 High-power gamma-ray flash generation in ultraintense laser–plasma interactions. Phys. Rev. Lett. 108, 195001.
Narozhnyi N. B. & Fofanov M. S. 1996 Photon emission by an electron in a collision with a short focused laser pulse. J. Expl Theor. Phys. 83, 1423.
Nerush E. N., Kostyukov I. Yu., Fedotov A. M., Narozhny N. B., Elkina N. V. & Ruhl H. 2011 Laser field absorption in self-generated electron–positron pair plasma. Phys. Rev. Lett. 106, 035001.
Nikishov A. I. & Ritus V. I. 1964a Quantum processes in the field of a plane electromagnetic wave and in a constant field. I. Sov. Phys. JETP 19, 529541.
Nikishov A. I. & Ritus V. I. 1964b Quantum processes in the field of a plane electromagnetic wave and in a constant field. II. Sov. Phys. JETP 19, 11911199.
Peacock T. & Haller G. 2013 The hidden skeleton of fluid flows. Phys. Today 66, 4147.
Ridgers C. P., Brady C. S., Duclous R., Kirk J. G., Bennett K., Arber T. D., Robinson A. & Bell A. 2012 Dense electron–positron plasmas and ultraintense gamma rays from laser-irradiated solids. Phys. Rev. Lett. 108, 165006.
Ritus V. I. 1985 Quantum effects of the interaction of elementary particles with an intense electromagnetic field. J. Sov. Laser Res. 6, 497617.
Schwinger J. 1954 The quantum correction in the radiation by energetic accelerated electrons. Proc. Natl Acad. Sci. USA 40, 132136.
Sheng Z.-M., Mima K., Sentoku Y., Jovanovic M. S., Taguchi T., Zhang J. & Meyer-ter Vehn J. 2002 Stochastic heating and acceleration of electrons in colliding laser fields in plasma. Phys. Rev. Lett. 88, 055004.
Sokolov A. A., Klepikov N. P. & Ternov I. M. 1952 Zur quantentheorie des energieverlustes von elektronen im magnetfeld. Zh. Ehksp. Teor. Fiz. 23, 632641.
Sokolov I. V., Nees J. A., Yanovsky V. P., Naumova N. M. & Mourou G. A. 2010 Emission and its back-reaction accompanying electron motion in relativistically strong and qed-strong pulsed laser fields. Phys. Rev. E 81, 036412.
Tamburini M., Pegoraro F., Di Piazza A., Keitel C. H., Liseykina T. V. & Macchi A. 2011 Radiation reaction effects on electron nonlinear dynamics and ion acceleration in laser–solid interaction. Nucl. Instrum. Meth. Phys. Res. A 653, 181.
Tamburini M., Pegoraro F., Di Piazza A., Keitel C. H. & Macchi A. 2010 Radiation reaction effects on radiation pressure acceleration. New. J. Phys. 12, 123005.
Tang S., Kumar N. & Keitel C. H.2016 Optimized plasma high harmonics generation from ultra-intense laser pulses. arXiv:1608.02513v1 [physics.plasm-ph].
Thomas A. G. R., Ridgers C. P., Bulanov S. S., Griffin B. J. & Mangles S. P. D. 2012 Strong radiation-damping effects in a gamma-ray source generated by the interaction of a high-intensity laser with a wakefield-accelerated electron beam. Phys. Rev. X 2, 041004.
Thomson W. (Lord Kelvin) 1884 Notes of Lectures on Molecular Dynamics and the Wave Theory of Light. Delivered at The Johns Hopkins University, Baltimore, by Sir William Thomson, Professor in the University of Glasgow. Stenographically Reported by A. S. Hathaway, Lately Fellow in Mathematics of The Johns Hopkins University. Johns Hopkins.
Titov A. I., Takabe H., Kämpfer B. & Hosaka H. 2012 Enhanced subthreshold e+ e- production in short laser pulses. Phys. Rev. Lett. 108, 240406.
Vranic M., Grismayer T., Fonseca R. A. & Silva L. O. 2017 Electron–positron cascades in multiple-laser optical traps. Plasma Phys. Control. Fusion 59, 014040.
Zaslavsky G. M. 2002 Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461580.
Zel’dovich Ya. B. 1975 Interaction of free electrons with electromagnetic radiation. Sov. Phys. Uspekhi 18, 7998.
Zhang S. 2013 Pre-acceleration from Landau–Lifshitz series. Prog. Theor. Exper. Physics 123, 123A01.
Zhidkov A. G., Koga J., Sasaki A. & Uesaka M. 2002 Radiation damping effects on the interaction of ultraintense laser pulses with an overdense plasma. Phys. Rev. Lett. 88, 185002.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Plasma Physics
  • ISSN: 0022-3778
  • EISSN: 1469-7807
  • URL: /core/journals/journal-of-plasma-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 21
Total number of PDF views: 171 *
Loading metrics...

Abstract views

Total abstract views: 315 *
Loading metrics...

* Views captured on Cambridge Core between 9th March 2017 - 17th December 2017. This data will be updated every 24 hours.