Skip to main content
×
×
Home

Collisional transport of impurities with flux-surface varying density in stellarators

  • S. Buller (a1), H. M. Smith (a2), P. Helander (a2), A. Mollén (a2), S. L. Newton (a3) and I. Pusztai (a1)...
Abstract

High- $Z$ impurities in magnetic-confinement devices are prone to develop density variations on the flux surface, which can significantly affect their transport. In this paper, we generalize earlier analytic stellarator calculations of the neoclassical radial impurity flux in the mixed-collisionality regime (collisional impurities and low-collisionality bulk ions) to include the effect of such flux-surface variations. We find that only in the homogeneous density case is the transport of highly collisional impurities (in the Pfirsch–Schlüter regime) independent of the radial electric field. We study these effects for a Wendelstein 7-X (W7-X) vacuum field, with simple analytic models for the potential perturbation, under the assumption that the impurity density is given by a Boltzmann response to a perturbed potential. In the W7-X case studied, we find that larger amplitude potential perturbations cause the radial electric field to dominate the transport of the impurities. In addition, we find that classical impurity transport can be larger than the neoclassical transport in W7-X.

Copyright
Corresponding author
Email address for correspondence: bstefan@chalmers.se
References
Hide All
Angioni, C. & Helander, P. 2014 Neoclassical transport of heavy impurities with poloidally asymmetric density distribution in tokamaks. Plasma Phys. Control. Fusion 56 (12), 124001.
Angioni, C., Mantica, P., Pütterich, T., Valisa, M., Baruzzo, M., Belli, E., Belo, P., Casson, F., Challis, C., Drewelow, P. et al. & JET EFDA Contributors 2014 Tungsten transport in JET H-mode plasmas in hybrid scenario, experimental observations and modelling. Nucl. Fusion 54 (8), 083028.
Braun, S. & Helander, P. 2010 Pfirsch–Schlüter impurity transport in stellarators. Phys. Plasmas 17 (7), 072514.
Calvo, I., Parra, F. I., Velasco, J. L., Alonso, J. A. & García-Regaña, J. M.2018 Stellarator impurity flux driven by electric fields tangent to magnetic surfaces. arXiv:1803.05691.
Fülöp, T. & Helander, P. 1999 Nonlinear neoclassical transport in a rotating impure plasma with large gradients. Phys. Plasmas 6 (8), 30663075.
García-Regaña, J., Beidler, C., Kleiber, R., Helander, P., Mollén, A., Alonso, J., Landreman, M., Maassberg, H., Smith, H., Turkin, Y. et al. 2017 Electrostatic potential variation on the flux surface and its impact on impurity transport. Nucl. Fusion 57 (5), 056004.
Hazeltine, R. D. 1973 Recursive derivation of drift-kinetic equation. Plasma Phys. 15 (1), 77.
Helander, P. 1998 Bifurcated neoclassical particle transport. Phys. Plasmas 5 (11), 39994004.
Helander, P. 2014 Theory of plasma confinement in non-axisymmetric magnetic fields. Rep. Progr. Phys. 77 (8), 087001.
Helander, P., Newton, S. L., Mollén, A. & Smith, H. M. 2017a Impurity transport in a mixed-collisionality stellarator plasma. Phys. Rev. Lett. 118, 155002.
Helander, P., Parra, F. I. & Newton, S. L. 2017b Stellarator bootstrap current and plasma flow velocity at low collisionality. J. Plasma Phys. 83 (2), 905830206.
Helander, P. & Sigmar, D. J. 2005 Collisional Transport in Magnetized Plasmas. Cambridge University Press.
Hirsch, M., Baldzuhn, J., Beidler, C., Brakel, R., Burhenn, R., Dinklage, A., Ehmler, H., Endler, M., Erckmann, V., Feng, Y. et al. 2008 Major results from the stellarator Wendelstein 7-AS. Plasma Phys. Control. Fusion 50 (5), 053001.
Kazakov, Y. O., Pusztai, I., Fülöp, T. & Johnson, T. 2012 Poloidal asymmetries due to ion cyclotron resonance heating. Plasma Phys. Control. Fusion 54 (10), 105010.
Mollén, A., Landreman, M., Smith, H. M., García-Regaña, J. M. & Nunami, M. 2018 Flux-surface variations of the electrostatic potential in stellarators: impact on the radial electric field and neoclassical impurity transport. Plasma Phys. Control. Fusion 60 (8), 084001.
Mollén, A., Pusztai, I., Fülöp, T., Kazakov, Y. O. & Moradi, S. 2012 Effect of poloidal asymmetries on impurity peaking in tokamaks. Phys. Plasmas 19 (5), 052307.
Mollén, A., Pusztai, I., Reinke, M. L., Kazakov, Y. O., Howard, N. T., Belli, E. A., Fülöp, T.& The Alcator C-Mod Team 2014 Impurity transport in Alcator C-Mod in the presence of poloidal density variation induced by ion cyclotron resonance heating. Plasma Phys. Control. Fusion 56 (12), 124005.
Nakajima, N., Okamoto, M., Todoroki, J., Nakamura, Y. & Wakatani, M. 1989 Optimization of the bootstrap current in a large helical system with . Nucl. Fusion 29 (4), 605616.
Newton, S. L., Helander, P., Mollén, A. & Smith, H. M. 2017 Impurity transport and bulk ion flow in a mixed collisionality stellarator plasma. J. Plasma Phys. 83 (5), 905830505.
Rutherford, P. H. 1974 Impurity transport in the Pfirsch–Schlüter regime. Phys. Fluids 17 (9), 17821784.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Plasma Physics
  • ISSN: 0022-3778
  • EISSN: 1469-7807
  • URL: /core/journals/journal-of-plasma-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed