Skip to main content
×
×
Home

Debye length and plasma skin depth: two length scales of interest in the creation and diagnosis of laboratory pair plasmas

  • E. V. Stenson (a1), J. Horn-Stanja (a1), M. R. Stoneking (a2) and T. Sunn Pedersen (a1) (a3)
Abstract

In traditional electron/ion laboratory plasmas, the system size $L$ is much larger than both the plasma skin depth $l_{s}$ and the Debye length $\unicode[STIX]{x1D706}_{D}$ . In current and planned efforts to create electron/positron plasmas in the laboratory, this is not necessarily the case. A low-temperature, low-density system may have $\unicode[STIX]{x1D706}_{D} ; a high-density, thermally relativistic system may have $l_{s} . Here we consider the question of what plasma physics phenomena are accessible (and/or diagnostically exploitable) in these different regimes and how this depends on magnetization. While particularly relevant to ongoing pair plasma creation experiments, the transition from single-particle behaviour to collective, ‘plasma’ effects – and how the criterion for that threshold is different for different phenomena – is an important but often neglected topic in electron/ion systems as well.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Debye length and plasma skin depth: two length scales of interest in the creation and diagnosis of laboratory pair plasmas
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Debye length and plasma skin depth: two length scales of interest in the creation and diagnosis of laboratory pair plasmas
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Debye length and plasma skin depth: two length scales of interest in the creation and diagnosis of laboratory pair plasmas
      Available formats
      ×
Copyright
Corresponding author
Email address for correspondence: evs@ipp.mpg.de
References
Hide All
Anderegg F., Hollmann E. M. & Driscoll C. F. 1998 Rotating field confinement of pure electron plasmas using Trivelpiece–Gould modes. Phys. Rev. Lett. 81, 48754878.
Attwood D.2009 Waves in plasma and emission spectra. https://people.eecs.berkeley.edu/∼ attwood/sxr2009/lecnotes/17_WavesInPlasmaAndEmissionSpectra.pdf, AST 210/EECS 213 (University of California, Berkeley).
Bellan P. M. 2006 Fundamentals of Plasma Physics. Cambridge University Press.
Berezhiani V. I. & Mahajan S. M. 1994 Large amplitude localized structures in a relativistic electron–positron ion plasma. Phys. Rev. Lett. 73, 11101113.
Bessho N. & Bhattacharjee A. 2005 Collisionless reconnection in an electron–positron plasma. Phys. Rev. Lett. 95, 245001.
Blackman E. G. & Field G. B. 1994 Kinematics of relativistic magnetic reconnection. Phys. Rev. Lett. 72, 494497.
Bryant D. A. 1996 Debye length in a kappa-distribution plasma. J. Plasma Phys. 56 (1), 8793.
Chen F. F. 1984 Introduction to Plasma Physics and Controlled Fusion, 2nd edn. Plenum.
Chen H., Fiuza F., Link A., Hazi A., Hill M., Hoarty D., James S., Kerr S., Meyerhofer D. D., Myatt J. et al. 2015 Scaling the yield of laser-driven electron–positron jets to laboratory astrophysical applications. Phys. Rev. Lett. 114, 215001.
Danielson J. R. & Surko C. M. 2005 Torque-balanced high-density steady states of single-component plasmas. Phys. Rev. Lett. 94 (3), 035001.
Edwards M. R., Fisch N. J. & Mikhailova J. M. 2016 Strongly enhanced stimulated Brillouin backscattering in an electron–positron plasma. Phys. Rev. Lett. 116, 015004.
Fitzpatrick R. 2008 Maxwell’s Equations and the Principles of Electromagnetism. Jones and Bartlett Learning.
Fried B. D. 1959 Mechanism for instability of transverse plasma waves. Phys. Fluids 2 (3), 337337.
Gary S. P. & Karimabadi H. 2009 Fluctuations in electron–positron plasmas: linear theory and implications for turbulence. Phys. Plasmas 16 (4), 042104.
Goldston R. J. & Rutherford P. H. 1995 Introduction to Plasma Physics. CRC Press.
Greaves R. G. & Surko C. M. 1995 An electron–positron beam-plasma experiment. Phys. Rev. Lett. 75, 38463849.
Greaves R. G. & Surko C. M. 2000 Inward transport and compression of a positron plasma by a rotating electric field. Phys. Rev. Lett. 85, 18831886.
Hansen C., Reimann A. B. & Fajans J. 1996 Dynamic and Debye shielding and antishielding. Phys. Plasmas 3 (5), 18201826.
Helander P. 2014 Microstability of magnetically confined electron–positron plasmas. Phys. Rev. Lett. 113, 135003.
Helander P. & Connor J. W. 2016 Gyrokinetic stability theory of electron–positron plasmas. J. Plasma Phys. 82, 905820301.
Howard N. T., Holland C., White A. E., Greenwald M. & Candy J. 2016 Multi-scale gyrokinetic simulation of tokamak plasmas: enhanced heat loss due to cross-scale coupling of plasma turbulence. Nucl. Fusion 56 (1), 014004.
Iwamoto N. 1993 Collective modes in nonrelativistic electron–positron plasmas. Phys. Rev. E 47, 604611.
Knoop M., Madsen N. & Thompson R. C.(Eds) 2016 Trapped Charged Particles. World Scientific Publishing Europe Ltd.
Kono M., Vranjes J. & Batool N. 2014 Electrostatic ion cyclotron and ion plasma waves in a symmetric pair-ion plasma cylinder. Phys. Rev. Lett. 112, 105001.
Liang E., Clarke T., Henderson A., Fu W., Lo W., Taylor D., Chaguine P., Zhou S., Hua Y., Cen X. et al. 2015 High e+/e- ratio dense pair creation with 1021w.cm-2 laser irradiating solid targets. Scientific Rep. 5, 13968.
Liu Y.-H., Guo F., Daughton W., Li H. & Hesse M. 2015 Scaling of magnetic reconnection in relativistic collisionless pair plasmas. Phys. Rev. Lett. 114, 095002.
Lopez R. A., Asenjo F. A., Munoz V. & Valdivia J. A. 2012 Parametric decays in relativistic magnetized electron–positron plasmas with relativistic temperatures. Phys. Plasmas 19 (8), 082104.
Mahmood S., Mushtaq A. & Saleem H. 2003 Ion acoustic solitary wave in homogeneous magnetized electron–positron-ion plasmas. New J. Phys. 5 (1), 28.
Melrose D. 2008 Quantum Plasmadynamics: Unmagnetized Plasmas. Springer.
Melrose D. B. 1997 Some properties of magnetized pair plasmas. Plasma Phys. Control. Fusion 39 (5A), A93A100.
Oohara W., Date D. & Hatakeyama R. 2005 Electrostatic waves in a paired fullerene-ion plasma. Phys. Rev. Lett. 95, 175003.
Oohara W. & Hatakeyama R. 2003 Pair-ion plasma generation using fullerenes. Phys. Rev. Lett. 91, 205005.
Pedersen T. Sunn, Danielson J. R., Hugenschmidt C., Marx G., Sarasola X., Schauer F., Schweikhard L., Surko C. M. & Winkler E. 2012 Plans for the creation and studies of electron–positron plasmas in a stellarator. New J. Phys. 14 (3), 035010.
Rubab N. & Murtaza G. 2006 Debye length in non-Maxwellian plasmas. Phys. Scr. 74 (2), 145148.
Saitoh H., Stanja J., Stenson E. V., Hergenhahn U., Niemann H., Pedersen T. Sunn, Stoneking M. R., Piochacz C. & Hugenschmidt C. 2015 Efficient injection of an intense positron beam into a dipole magnetic field. New J. Phys. 17 (10), 103038.
Saitoh H., Yoshida Z., Morikawa J., Yano Y., Hayashi H., Mizushima T., Kawai Y., Kobayashi M. & Mikami H. 2010 Confinement of electron plasma by levitating dipole magnet. Phys. Plasmas 17 (11), 112111.
Sarasola X. & Pedersen T. Sunn 2012 First experimental studies of the physics of plasmas of arbitrary degree of neutrality. Plasma Phys. Control. Fusion 54 (12), 124008.
Sarri G., Poder K., Cole J. M., Schumaker W., Di Piazza A., Reville B., Dzelzainis T., Doria D., Gizzi L. A., Grittani G. et al. 2015 Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Commun. 6, 6747.
Stenson E. V., Saitoh H., Stanja J., Niemann H., Hergenhahn U., Pedersen T. Sunn, Marx G. H., Schweikhard L., Danielson J. R., Surko C. M. et al. 2015 Progress toward positron–electron pair plasma experiments. AIP Conf. Proc. 1668 (1), 040004.
Stewart G. A. & Laing E. W. 1992 Wave propagation in equal-mass plasmas. J. Plasma Phys. 47 (2), 295319.
Stix T. H. 1992 Waves in Plasmas. American Institute of Physics.
Tsytovich V. & Wharton C. B. 1978 Laboratory electron–positron plasma – a new research object. Comments Plasma Phys. Control. Fusion 4, 91100.
Verheest F. & Lakhina G. S. 1996 Oblique solitary Alfven modes in relativistic electron–positron plasmas. Astrophys. Space Sci. 240, 215224.
Wei-Ke A., Xi-Jun Q., Chun-Hua S. & Zhi-Yuan Z. 2005 Dependence of the average Lorentz factor on temperature in relativistic plasmas. Chin. Phys. Lett. 22 (5), 11761178.
Wilks S. C., Chen H., Liang E., Patel P., Price D., Remington B., Shepherd R., Tabak M. & Kruer W. L. 2005 Electron-positron plasmas created by ultra-intense laser pulses interacting with solid targets. Astrophys. Space Sci. 298 (1), 347355.
Zank G. P. & Greaves R. G. 1995 Linear and nonlinear modes in nonrelativistic electron–positron plasmas. Phys. Rev. E 51, 60796090.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Plasma Physics
  • ISSN: 0022-3778
  • EISSN: 1469-7807
  • URL: /core/journals/journal-of-plasma-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 123
Total number of PDF views: 280 *
Loading metrics...

Abstract views

Total abstract views: 662 *
Loading metrics...

* Views captured on Cambridge Core between 6th February 2017 - 20th January 2018. This data will be updated every 24 hours.