Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-12T09:29:47.765Z Has data issue: false hasContentIssue false

Development of the ambipolar electric field in a compressed current sheet and the impact on magnetic reconnection

Published online by Cambridge University Press:  19 January 2024

Ami M. DuBois*
Affiliation:
Plasma Physics Division, U.S. Naval Research Laboratory, Washington, DC 20375, USA
Chris Crabtree
Affiliation:
Plasma Physics Division, U.S. Naval Research Laboratory, Washington, DC 20375, USA
Gurudas Ganguli
Affiliation:
Plasma Physics Division, U.S. Naval Research Laboratory, Washington, DC 20375, USA
*
Email address for correspondence: ami.dubois@nrl.navy.mil

Abstract

Satellite data analysis of a compressed gyro-scale current sheet prior to magnetic reconnection in the magnetotail shows that electrostatic lower hybrid waves localized to the region of a transverse ambipolar electric field at the centre of the current sheet are driven by $\boldsymbol{E} \times \boldsymbol{B}$ velocity shear and result from compression. The presence and location of shear-driven waves around the centre of the current sheet, where the magnetic field reverses and the density gradient is minimal, is consistent with our model. This is notable because the free energy source is the curvature of the electron $\boldsymbol{E} \times \boldsymbol{B}$ flow and not the density gradient. Laboratory experiments and particle-in-cell (PIC) simulations have shown that shear-driven lower hybrid fluctuations are capable of producing anomalous cross-field transport (viscosity) and resistivity, which can trigger magnetic reconnection. We estimate the terms in the generalized Ohm's Law directly from MMS data as the spacecraft cross a gyro-scale current sheet. Our analysis shows that the wave effects (resistivity, diffusion and viscosity) and pressure anisotropy effects are comparable. We also find that the quasi-static electric field gradient is correlated with a non-gyrotropic electron distribution function, which is consistent with our model. Furthermore, theoretical arguments suggest agyrotropy is an indicator of the possibility for magnetic reconnection to occur.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amatucci, W.E., Ganguli, G., Walker, D.N., Gatling, G., Balkey, M.M. & McCulloch, T. 2003 Laboratory investigation of boundary layer processes due to strong spatial inhomogeneity. Phys. Plasmas 10 (5), 1963.CrossRefGoogle Scholar
Amatucci, W.E., Walker, D.N., Ganguli, G., Duncan, D., Antoniades, J.A., Bowles, J.H., Gavrishchaka, V. & Koepke, M.E. 1998 Velocity-shear-driven ion-cyclotron waves and associated transverse ion heating. J. Geophys. Res. 103 (A6), 1171111724.CrossRefGoogle Scholar
Artemyev, A.V., Angelopoulos, V., Runov, A. & Petrukovich, A.A. 2019 Global view of current sheet thinning: plasma pressure gradients and large-scale currents. J. Geophys. Res.: Space Phys. 124 (1), 264278.CrossRefGoogle Scholar
Artemyev, A. & Zelenyi, L. 2013 Kinetic structure of current sheets in the earth magnetotail. Space Sci. Rev. 178, 419440.CrossRefGoogle Scholar
Asano, Y., Mukai, T., Hoshino, M., Saito, Y., Hayakawa, H. & Nagai, T. 2004 Current sheet structure around the near-Earth neutral line observed by Geotail. J. Geophys. Res.: Space Phys. 109 (A02212), 118.CrossRefGoogle Scholar
Birn, J., Schindler, K. & Hesse, M. 2004 Thin electron current sheets and their relation to auroral potentials. J. Geophys. Res. 109, A02217.CrossRefGoogle Scholar
Borovsky, J.E. & Valdivia, J.A. 2018 The Earth's magnetosphere: a systems science overview and assessment. In Surveys in Geophysics, vol. 39. Springer.CrossRefGoogle Scholar
Burch, J.L., Moore, T.E., Torbert, R.B. & Giles, B.L. 2016 Magnetospheric multiscale overview and science objectives. Space Sci. Rev. 199, 521.CrossRefGoogle Scholar
Cai, H.J. & Lee, L.C. 1997 The generalized Ohm's law in collisionless magnetic reconnection. Phys. Plasmas 4 (3), 509520.CrossRefGoogle Scholar
Che, H. 2017 How anomalous resistivity accelerates magnetic reconnection. Phys. Plasmas 24 (8), 082115.CrossRefGoogle Scholar
Chen, J. 1993 Physics of the magnetotail current sheet. Phys. Fluids B 5 (7), 26632670.CrossRefGoogle Scholar
Chen, C., Liu, Y.D. & Hu, H. 2021 Macro magnetic holes caused by ripples in heliospheric current sheet from coordinated imaging and parker solar probe observations. Astrophys. J. 921 (15), 110.CrossRefGoogle Scholar
Chen, L.-J., Wang, S., Le Contel, O., Rager, A., Hesse, M., Drake, J., Dorelli, J., Ng, J., Bessho, N., Graham, D., et al. 2020 Lower-hybrid drift waves driving electron nongyrotropic heating and vortical flows in a magnetic reconnection layer. Phys. Rev. Lett. 125, 025103.CrossRefGoogle Scholar
Chitta, L.P., Priest, E.R. & Cheng, X. 2021 From formation to disruption: observing the multiphase evolution of a solar flare current sheet. Astrophys. J. 911 (133), 112.CrossRefGoogle Scholar
Crabtree, C., Ganguli, G., DuBois, A.M. & Sen, A. 2024 Kinetic theory of compressed neutral sheets. Phys. Plasmas (to be submitted).Google Scholar
Daughton, W. 2003 Electromagnetic properties of the lower-hybrid drift instability in a thin current sheet. Phys. Plasmas 10 (8), 31033119.CrossRefGoogle Scholar
Daughton, W., Roytershteyn, V., Karimabadi, H., Yin, L., Albright, B.J., Bergen, B. & Bowers, K.J. 2011 Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas. Nature Phys. 7 (7), 539542.CrossRefGoogle Scholar
Davidson, R.C. & Gladd, N.T. 1975 Anomalous transport properties associated with the lower-hybrid-drift instability. Phys. Fluids 18 (10), 13271335.CrossRefGoogle Scholar
Denton, R.E., Sonnerup, B.U.Ö., Russell, C.T., Hasegawa, H., Phan, T.-D., Strangeway, R.J., Giles, B.L., Ergun, R.E., Lindqvist, P.-A., Torbert, R.B. et al. 2018 Determining L-M-N current sheet coordinates at the magnetopause from magnetospheric multiscale data. J. Geophys. Res.: Space Phys. 123, 22742295.CrossRefGoogle Scholar
Drake, J.F., Gladd, N.T. & Huba, J.D. 1981 Magnetic field diffusion and dissipation in reversed-field plasmas. Phys. Fluids 24 (1), 7887.CrossRefGoogle Scholar
DuBois, A.M., Crabtree, C., Ganguli, G., Malaspina, D.M. & Amatucci, W.E. 2022 MMS observations of a compressed current sheet: importance of the ambipolar electric field. Phys. Rev. Lett. 129 (10), 105101.CrossRefGoogle ScholarPubMed
DuBois, A.M., Thomas, E. Jr., Amatucci, W.E. & Ganguli, G. 2013 Plasma response to a varying degree of stress. Phys. Rev. Lett. 111 (4), 145002.CrossRefGoogle ScholarPubMed
DuBois, A.M., Thomas, E., Amatucci, W.E. & Ganguli, G. 2014 Density gradient effects on transverse shear driven lower hybrid waves. Phys. Plasmas 21 (6), 062117.CrossRefGoogle Scholar
Egedal, J., Le, A. & Daughton, W. 2013 A review of pressure anisotropy caused by electron trapping in collisionless plasma, and its implications for magnetic reconnection. Phys. Plasmas 20 (6), 061201.CrossRefGoogle Scholar
Egedal, J., Ng, J., Le, A., Daughton, W., Wetherton, B., Dorelli, J., Gershman, D. & Rager, A. 2019 Pressure tensor elements breaking the frozen-in law during reconnection in earth's magnetotail. Phys. Rev. Lett. 123, 225101.CrossRefGoogle ScholarPubMed
Fletcher, A.C., Crabtree, C., Ganguli, G., Malaspina, D., Tejero, E. & Chu, X. 2019 Kinetic equilibrium and stability analysis of dipolarization fronts. J. Geophys. Res.: Space Phys. 124, 20102028.CrossRefGoogle Scholar
Ganguli, G., Crabtree, C., Fletcher, A. & Amatucci, B. 2020 Behavior of compressed plasmas in magnetic fields. Rev. Mod. Plasma Phys. 4 (12), 189.CrossRefGoogle ScholarPubMed
Ganguli, G., Crabtree, C., Fletcher, A.C., Tejero, E., Malaspina, D. & Cohen, I. 2018 Kinetic equilibrium of dipolarization fronts. Sci. Rep. 8, 17186.CrossRefGoogle ScholarPubMed
Ganguli, G., Keskinen, M.J., Romero, H., Heelis, R., Moore, T. & Pollock, C. 1994 Coupling of microprocesses and macroprocesses due to velocity shear: an application to the low-altitude ionosphere. J. Geophys. Res. 99 (A5), 88738889.CrossRefGoogle Scholar
Ganguli, G., Lee, Y.C. & Palmadesso, P.J. 1988 a Electron-ion hybrid mode due to transverse velocity shear. Phys. Fluids 31 (10), 2753.CrossRefGoogle Scholar
Ganguli, G., Lee, Y.C. & Palmadesso, P.J. 1988 b Kinetic theory for electrostatic waves due to transverse velocity shears. Phys. Fluids 31 (4), 823.CrossRefGoogle Scholar
Graham, D.B., Khotyaintsev, Y.V., André, M., Vaivads, A., Divin, A., Drake, J.F., Norgren, C., Le Contel, O., Lindqvist, P.-A., Rager, A.C., et al. 2022 Direct observations of anomalous resistivity and diffusion in collisionless plasma. Nature Commun. 13 (1), 2954.CrossRefGoogle ScholarPubMed
Greess, S., Egedal, J., Stanier, A., Daughton, W., Olson, J., , A., Myers, R., Millet-Ayala, A., Clark, M., Wallace, J., et al. 2021 Laboratory verification of electron-scale reconnection regions modulated by a three-dimensional instability. J. Geophys. Res.: Space Phys. 126, e2021JA029316.CrossRefGoogle Scholar
Gurnett, D.A., Anderson, R.R., Tsurutani, B.T., Smith, E.J., Paschmann, G., Haerendel, G., Bame, S.J. & Russell, C.T. 1979 Plasma wave turbulence at the magnetopause: observations from ISEE 1 and 2. J. Geophys. Res. 84 (A12), 7043.CrossRefGoogle Scholar
Harris, E.G. 1962 On a plasma sheath separating regions of oppositely directed magnetic field. Il Nuovo Cimento 23 (1), 115121.CrossRefGoogle Scholar
Hoshino, M., Nishida, A., Mukai, T., Saito, Y., Yamamoto, T. & Kokubun, S. 1996 Structure of plasma sheet in magnetotail: double-peaked electric current sheet. J. Geophys. Res. 101 (A11), 2477524786.CrossRefGoogle Scholar
Huba, J.D. & Ganguli, G. 1983 Influence of magnetic shear on the lower-hybrid drift instability in finite β plasmas. Phys. Fluids 26 (1), 124132.CrossRefGoogle Scholar
Huba, J.D., Gladd, N.T. & Papadopoulos, K. 1978 Lower-hybrid-drift wave turbulence in the distant magnetotail. J. Geophys. Res. 83 (A11), 52175226.CrossRefGoogle Scholar
Hwang, K.-J., Goldstein, M.L., Moore, T.E., Walsh, B.M., Baishev, D.G., Moiseyev, A.V., Shevtsov, B.M. & Yumoto, K. 2014 A tailward moving current sheet normal magnetic field front followed by an earthward moving dipolarization front. J. Geophys. Res.: Space Phys. 119, 53165327.CrossRefGoogle Scholar
Khotyaintsev, Y.V., Graham, D.B., Norgren, C. & Vaivads, A. 2019 Collisionless magnetic reconnection and waves: progress review. Front. Astron. Space Sci. 6 (70), 120.CrossRefGoogle Scholar
Korovinskiy, D.B., Kiehas, S.A., Panov, E.V., Semenov, V.S., Erkaev, N.V., Divin, A.V. & Kubyshkin, I.V. 2021 The inertia-based model for reconstruction of the electron diffusion region. J. Geophys. Res. 126 (5).CrossRefGoogle Scholar
Kumar, T.A.S., Mattoo, S.K. & Jha, R. 2002 Plasma diffusion across inhomogeneous magnetic fields. Phys. Plasmas 9 (7), 2946.CrossRefGoogle Scholar
Lapenta, G., Berchem, J., Zhou, M., Walker, R.J., El-Alaoui, M., Goldstein, M.L., Paterson, W.R., Giles, B.L., Pollock, C.J., Russell, C.T., et al. 2017 On the origin of the crescent-shaped distributions observed by MMS at the magnetopause. J. Geophys. Res.: Space Phys. 122, 20242039.CrossRefGoogle Scholar
Le, A., Egedal, J., Daughton, W., Fox, W. & Katz, N. 2009 Equations of state for collisionless guide-field reconnection. Phys. Rev. Lett. 102 (8), 085001.CrossRefGoogle ScholarPubMed
Mahajan, S.M. & Hazeltine, R.D. 2000 Sheared-flow generalization of the Harris sheet. Phys. Plasmas 7 (4), 12871293.CrossRefGoogle Scholar
Matsubara, A. & Tanikawa, T. 2000 Anomalous cross-field transport of electrons driven by the electron-ion hybrid instability due to the velocity shear in a magnetized filamentary plasma. Japan. J. Appl. Phys. 39, 49204932.CrossRefGoogle Scholar
Mcbride, J.B., Ott, E., Boris, J.P. & Orens, J.H. 1972 Theory and simulation of turbulent heating by the modified two-stream instability. Phys. Fluids 15 (12), 23672382.CrossRefGoogle Scholar
McComas, D.J., Russell, C.T., Elphic, R.C. & Bame, S.J. 1986 The near-earth cross-tail current sheet: detailed ISEE 1 and 2 case studies. J. Geophys. Res. 91 (A4), 42874301.CrossRefGoogle Scholar
Nakamura, R., Baumjohann, W., Asano, Y., Runov, A., Balogh, A., Owen, C.J., Fazakerley, A.N., Fujimoto, M., Klecker, B. & Rème, H. 2006 Dynamics of thin current sheets associated with magnetotail reconnection. J. Geophys. Res.: Space Phys. 111, A11206.CrossRefGoogle Scholar
Norgren, C., Graham, D.B., Khotyaintsev, Y.V., André, M., Vaivads, A., Hesse, M., Eriksson, E., Lindqvist, P.-A., Lavraud, B., Burch, J., et al. 2018 Electron reconnection in the magnetopause current layer. J. Geophys. Res.: Space Phys. 123, 92229238.CrossRefGoogle Scholar
Norgren, C., Vaivads, A., Khotyaintsev, Y.V. & André, M. 2012 Lower hybrid drift waves: space observations. Phys. Rev. Lett. 109, 055001.CrossRefGoogle ScholarPubMed
Petrukovich, A.A., Artemyev, A.V., Malova, H.V., Popov, V.Y., Nakamura, R. & Zelenyi, L.M. 2011 Embedded current sheets in the Earth's magnetotail. J. Geophys. Res. 116, A00I25.CrossRefGoogle Scholar
Petrukovich, A., Artemyev, A., Vasko, I., Nakamura, R. & Zelenyi, L. 2015 Current sheets in the earth magnetotail: plasma and magnetic field structure with cluster project observations. Space Sci. Rev. 188, 311337.CrossRefGoogle Scholar
Pollock, C., Moore, T., Jacques, A., Burch, J., Gliese, U., Saito, Y., Omoto, T., Avanov, L., Barrie, A., Coffey, V., et al. 2016 Fast plasma investigation for magnetospheric multiscale. Space Sci. Rev. 199, 331406.CrossRefGoogle Scholar
Rager, A.C., Dorelli, J.C., Gershman, D.J., Uritsky, V., Avanov, L.A., Torbert, R.B., Burch, J.L., Ergun, R.E., Egedal, J., Schiff, C., et al. 2018 Electron crescent distributions as a manifestation of diamagnetic drift in an electron-scale current sheet: magnetospheric multiscale observations using new 7.5 ms fast plasma investigation moments. Geophys. Res. Lett. 45, 578584.CrossRefGoogle Scholar
Romero, H. & Ganguli, G. 1993 Nonlinear evolution of a strongly sheared cross-field plasma flow. Phys. Fluids B 5 (9), 31633181.CrossRefGoogle Scholar
Runov, A., Sergeev, V.A., Nakamura, R., Baumjohann, W., Apatenkov, S., Asano, Y., Takada, T., Volwerk, M., Vörös, Z., Zhang, T.L., et al. 2006 Local structure of the magnetotail current sheet: 2001 Cluster observations. Ann. Geophys. 24 (1), 247262.CrossRefGoogle Scholar
Runov, A., Sergeev, V., Nakamura, R., Baumjohann, W., Vöros, Z., Volwerk, M., Asano, Y., Klecker, B., Rème, H. & Balogh, A. 2004 Properties of a bifurcated current sheet observed on 29 August 2001. Ann. Geophys. 22 (7), 25352540.CrossRefGoogle Scholar
Russell, C.T., Anderson, B.J., Baumjohann, W., Bromund, K.R., Dearborn, D., Fischer, D., Le, G., Leinweber, H.K., Leneman, D., Magnes, W., et al. 2016 The magnetospheric multiscale magnetometers. Space Sci. Rev. 199, 189256.CrossRefGoogle Scholar
Sanny, J., McPherron, R.L., Russell, C.T., Baker, D.N., Pulkkinen, T.I. & Nishida, A. 1994 Growth-phase thinning of the near-Earth current sheet during the CDAW 6 substorm. J. Geophys. Res. 99 (A4), 58055816.CrossRefGoogle Scholar
Schindler, K. & Birn, J. 1993 On the cause of thin current sheets in the near-earth magnetotail and their possible significance for magnetospheric substorms. J. Geophys. Res. 98 (A9), 1547715485.CrossRefGoogle Scholar
Schindler, K. & Hesse, M. 2008 Formation of thin bifurcated current sheets by quasisteady compression. Phys. Plasmas 15, 042902.CrossRefGoogle Scholar
Schindler, K. & Hesse, M. 2010 Conditions for the formation of nongyrotropic current sheets in slowly evolving plasmas. Phys. Plasmas 17, 082103.CrossRefGoogle Scholar
Scudder, J. & Daughton, W. 2008 Illuminating electron diffusion regions of collisionless magnetic reconnection using electron agyrotropy. J. Geophys. Res. 113 (6), A06222.CrossRefGoogle Scholar
Scudder, J.D. & Mozer, F.S. 2005 Electron demagnetization and collisionless magnetic reconnection in Βe ≪1 plasmas. Phys. Plasmas 12 (9), 092903.CrossRefGoogle Scholar
Sergeev, V.A., Mitchel, D.G., Russell, C.T. & Williams, D.J. 1993 Structure of the tail plasma/current sheet at -11RE and its changes in the course of a substorm. J. Geophys. Res. 98 (A10), 1734517365.CrossRefGoogle Scholar
Silin, I., Büchner, J. & Vaivads, A. 2005 Anomalous resistivity due to nonlinear lower-hybrid drift waves. Phys. Plasmas 12, 062902.CrossRefGoogle Scholar
Sitnov, M.I., Guzdar, P.N. & Swisdak, M. 2003 A model of the bifurcated current sheet. Geophys. Res. Lett. 30 (13), 1712.CrossRefGoogle Scholar
Sitnov, M.I., Swisdak, M., Guzdar, P.N. & Runov, A. 2006 Structure and dynamics of a new class of thin current sheets. J. Geophys. Res. 111, A08204.CrossRefGoogle Scholar
Sonnerup, B.U. 1988 On the theory of steady state reconnection. Comput. Phys. Commun. 49 (1), 143159.CrossRefGoogle Scholar
Staniland, N.R., Dougherty, M.K., Masters, A. & Bunce, E.J. 2020 Determining the nominal thickness and variability of the magnetodisc current sheet at saturn. J. Geophys. Res.: Space Phys. 125 (5), e2020JA027794.CrossRefGoogle Scholar
Takahashi, K. & Hones, E.W. Jr. 1988 ISEE 1 and 2 observations of ion distributions at the plasma sheet-tail lobe boundary. J. Geophys. Res. 93 (6), 85588582.CrossRefGoogle Scholar
Torbert, R.B., Burch, J.L., Giles, B.L., Gershman, D., Pollock, C.J., Dorelli, J., Avanov, L., Argall, M.R., Shuster, J., Strangeway, R.J., et al. 2016 a Estimates of terms in Ohm's law during an encounter with an electron diffusion region. Geophys. Res. Lett. 43, 59185925.CrossRefGoogle Scholar
Torbert, R.B., Russell, C.T., Magnes, W., Ergun, R.E., Lindqvist, P.-A., Le Contel, O., Vaith, H., Macri, J., Myers, S., Rau, D., et al. 2016 b The FIELDS instrument suite on MMS: scientific objectives, measurements, and data products. Space Sci. Rev. 199, 105135.CrossRefGoogle Scholar
Uzdensky, D.A., Loureiro, N.F. & Schekochihin, A.A. 2010 Fast magnetic reconnection in the plasmoid-dominated regime. Phys. Rev. Lett. 105, 235002.CrossRefGoogle ScholarPubMed
Vaivads, A., André, M., Buchert, S.C., Wahlund, J.E., Fazakerley, A.N. & Cornilleau-Wehrlin, N. 2004 Cluster observations of lower hybrid turbulence within thin layers at the magnetopause. Geophys. Res. Lett. 31, L03804.CrossRefGoogle Scholar
Valentini, F., Trávníček, P., Califano, F., Hellinger, P. & Mangeney, A. 2007 A hybrid-Vlasov model based on the current advance method for the simulation of collisionless magnetized plasma. J. Comput. Phys. 225 (1), 753770.CrossRefGoogle Scholar
Walker, D.N., Amatucci, W.E., Ganguli, G., Antoniades, J.A., Bowles, J.H. & Koepke, M.E. 1997 Perpendicular ion heating by velocity-shear-driven waves. Geophys. Res. Lett. 24 (10), 11871190.CrossRefGoogle Scholar
Wilson, L.B. III, Brosius, A.L., Gopalswamy, N., Nieves-Chinchilla, T., Szabo, A., Hurley, K., Phan, T., Kasper, J.C., Lugaz, N., Richardson, I.G., et al. 2021 A quarter century of wind spacecraft discoveries. Rev. Geophys. 59 (2), 170.CrossRefGoogle Scholar
Xu, Y., Fu, H.S., Norgren, C., Hwang, K.J. & Liu, C.M. 2018 Formation of dipolarization fronts after current sheet thinning. Phys. Plasmas 25, 072123.CrossRefGoogle Scholar
Yamada, M., Kulsrud, R. & Ji, H. 2010 Magnetic reconnection. Rev. Mod. Phys. 82 (1), 603664.CrossRefGoogle Scholar
Yoo, J., Ji, J.-Y., Ambat, M.V., Wang, S., Ji, H., Lo, J., Li, B., Ren, Y., Jara-Almonte, J., Chen, L.-J., et al. 2020 Lower hybrid drift waves during guide field reconnection. Geophys. Res. Lett. 47, e2020GL087192.CrossRefGoogle Scholar