Skip to main content
    • Aa
    • Aa

Diagnosing collisionless energy transfer using field–particle correlations: Vlasov–Poisson plasmas

  • Gregory G. Howes (a1), Kristopher G. Klein (a2) (a3) and Tak Chu Li (a1)

Turbulence plays a key role in the conversion of the energy of large-scale fields and flows to plasma heat, impacting the macroscopic evolution of the heliosphere and other astrophysical plasma systems. Although we have long been able to make direct spacecraft measurements of all aspects of the electromagnetic field and plasma fluctuations in near-Earth space, our understanding of the physical mechanisms responsible for the damping of the turbulent fluctuations in heliospheric plasmas remains incomplete. Here we propose an innovative field–particle correlation technique that can be used to measure directly the secular energy transfer from fields to particles associated with collisionless damping of the turbulent fluctuations. Furthermore, this novel procedure yields information about the collisionless energy transfer as a function of particle velocity, providing vital new information that can help to identify the dominant collisionless mechanism governing the damping of the turbulent fluctuations. Kinetic plasma theory is used to devise the appropriate correlation to diagnose Landau damping, and the field–particle correlation technique is thoroughly illustrated using the simplified case of the Landau damping of Langmuir waves in a 1D-1V (one dimension in physical space and one dimension in velocity space) Vlasov–Poisson plasma. Generalizations necessary to apply the field–particle correlation technique to diagnose the collisionless damping of turbulent fluctuations in the solar wind are discussed, highlighting several caveats. This novel field–particle correlation technique is intended to be used as a primary analysis tool for measurements from current, upcoming and proposed spacecraft missions that are focused on the kinetic microphysics of weakly collisional heliospheric plasmas, including the Magnetospheric Multiscale (MMS), Solar Probe Plus, Solar Orbiter and Turbulence Heating ObserveR (THOR) missions.

Corresponding author
Email address for correspondence:
Hide All
AndersonR. R. & MaedaK. 1977 VLF emissions associated with enhanced magnetospheric electrons. J. Geophys. Res. 82, 135146.
BaleS. D., GoetzK., HarveyP. R., TurinP., BonnellJ. W., Dudok de WitT., ErgunR. E., MacDowallR. J., PulupaM., AndreM. et al. 2016 The FIELDS Instrument Suite for Solar Probe Plus. Space Sci. Rev 204 (1), 4982.
BarnesA. 1966 Collisionless damping of hydromagnetic waves. Phys. Fluids 9, 14831495.
BorovskyJ. E. & DentonM. H. 2011 No evidence for heating of the solar wind at strong current sheets. Astrophys. J. Lett. 739, L61.
BourouaineS. & ChandranB. D. G. 2013 Observational test of stochastic heating in low- inline-graphic $\unicode[STIX]{x1D6FD}$ fast-solar-wind streams. Astrophys. J. 774, 96.
BourouaineS., MarschE. & VocksC. 2008 On the efficiency of nonresonant ion heating by coronal Alfvén waves. Astrophys. J. Lett. 684, L119L122.
BurchJ. L., MooreT. E., TorbertR. B. & GilesB. L. 2016 Magnetospheric multiscale overview and science objectives. Space Sci. Rev. 199, 521.
BurkeW. J., GoughM. P., GentileL. C., HuangC. Y., MachuzakJ. S. & RubinA. G. 1999 MHz and kHz modulations of particle fluxes during beam experiments of the tethered satellite system missions. Adv. Space Res. 24, 10471054.
BurtonR. K. & HolzerR. E. 1974 The origin and propagation of chorus in the outer magnetosphere. J. Geophys. Res. 79, 10141023.
ChandranB. D. G. 2010 Alfvén-wave turbulence and perpendicular ion temperatures in coronal holes. Astrophys. J. 720, 548554.
ChandranB. D. G., DennisT. J., QuataertE. & BaleS. D. 2011 Incorporating kinetic physics into a two-fluid solar-wind model with temperature anisotropy and low-frequency Alfvén-wave turbulence. Astrophys. J. 743, 197.
ChandranB. D. G., LiB., RogersB. N., QuataertE. & GermaschewskiK. 2010 Perpendicular ion heating by low-frequency Alfvén-wave turbulence in the solar wind. Astrophys. J. 720, 503515.
ChastonC. C. 2006 ULF waves and auroral electrons. In Magnetospheric ULF Waves: Synthesis and New Directions (ed. Takahashi K., Chi P. J., Denton R. E. & Lysak R. L.), Washington DC American Geophysical Union Geophysical Monograph Series, vol. 169, p. 239. American Geophysical Union.
ChastonC. C., BonnellJ. W., CarlsonC. W., McfaddenJ. P., ErgunR. E. & StrangewayR. J. 2003 Properties of small-scale Alfvén waves and accelerated electrons from FAST. J. Geophys. Res. 108, 8003.
ChastonC. C., CarlsonC. W., McfaddenJ. P., ErgunR. E. & StrangewayR. J. 2007 How important are dispersive Alfvén waves for auroral particle acceleration? Geophys. Res. Lett. 34, 7101.
ChenC. H. K., BaleS. D., SalemC. & MozerF. S. 2011 Frame dependence of the electric field spectrum of solar wind turbulence. Astrophys. J. Lett. 737, L41.
ChenC. H. K., BoldyrevS., XiaQ. & PerezJ. C. 2013 Nature of subproton scale turbulence in the solar wind. Phys. Rev. Lett. 110 (22), 225002.
ChenL., LinZ. & WhiteR. 2001 On resonant heating below the cyclotron frequency. Phys. Plasmas 8, 47134716.
ColemanP. J.Jr. 1968 Turbulence, viscosity, and dissipation in the solar-wind plasma. Astrophys. J. 153, 371388.
DenskatK. U., BeinrothH. J. & NeubauerF. M. 1983 Interplanetary magnetic field power spectra with frequencies from 2.4 inline-graphic $\times$ 10 to the -5th HZ to 470 HZ from HELIOS-observations during solar minimum conditions. J. Geophys. Zeit. Geophys. 54, 6067.
DmitrukP., MatthaeusW. H. & SeenuN. 2004 Test particle energization by current sheets and nonuniform fields in magnetohydrodynamic turbulence. Astrophys. J. 617, 667679.
ErgunR. E., CarlsonC. W., McfaddenJ. P., ClemmonsJ. H. & BoehmM. H. 1991a Langmuir wave growth and electron bunching – results from a wave–particle correlator. J. Geophys. Res. 96, 225238.
ErgunR. E., CarlsonC. W., McfaddenJ. P., TonthatD. M. & ClemmonsJ. H. 1991b Observation of electron bunching during Landau growth and damping. J. Geophys. Res. 96, 11.
ErgunR. E., CarlsonC. W., MozerF. S., DeloryG. T., TemerinM., McfaddenJ. P., PankowD., AbiadR., HarveyP., WilkesR. et al. 2001 The FAST satellite fields instrument. Space Sci. Rev. 98, 6791.
ErgunR. E., McfaddenJ. P. & CarlsonC. W. 1998 Wave–Particle Correlator Instrument Design, Washington DC American Geophysical Union Geophysical Monograph Series, vol. 102, p. 325. American Geophysical Union.
FredricksR. W. & ScarfF. L. 1973 Recent studies of magnetospheric electric field emissions above the electron gyrofrequency. J. Geophys. Res. 78, 310314.
FriedB. D. & ConteS. D. 1961 The Plasma Dispersion Function. Academic.
FukuharaH., KojimaH., UedaY., OmuraY., KatohY. & YamakawaH. 2009 A new instrument for the study of wave–particle interactions in space: one-chip wave–particle interaction analyzer. Earth Planets Space 61, 765778.
GaryS. P. 1999 Collisionless dissipation wavenumber: linear theory. J. Geophys. Res. 104, 67596762.
GoertzC. K. & BoswellR. W. 1979 Magnetosphere-ionosphere coupling. J. Geophys. Res. 84, 72397246.
GoldsteinM. L., RobertsD. A. & FitchC. A. 1994 Properties of the fluctuating magnetic helicity in the inertial and dissipation ranges of solar wind turbulence. J. Geophys. Res. 99, 1151911538.
GoughM. P. 1980 A technique for rocket-borne detection of electron bunching at megahertz frequencies. Nucl. Instrum. Meth. 177, 581587.
GoughM. P., BuckleyA. M., CarozziT. & BeloffN. 2003 Experimental studies of wave–particle interactions in space using particle correlators: results and future developments. Adv. Space Res. 32, 407416.
GoughM. P., BurkeW. J., HardyD. A., HuangC. Y., GentileL. C., RubinA. G., OberhardtM. R., DrobotA. T., ThompsonD. C. & RaittW. J. 1998a Megahertz electron modulations during TSS 1R. Geophys. Res. Lett. 25, 441444.
GoughM. P., ChristiansenP. J. & WilhelmK. 1990 Auroral beam-plasma interactions – particle correlator investigations. J. Geophys. Res. 95, 1228712294.
GoughM. P., HardyD. A., BurkeW. J., OberhardtM. R., GentileL. C., HuangC. Y., CookeD. L., RaittW. J., ThompsonD. C. & McneilW. 1997 Heating and low-frequency modulation of electrons observed during electron beam operations on TSS 1. J. Geophys. Res. 102, 1733517358.
GoughM. P., HardyD. A. & JamesH. G. 1998b First results from the energetic particle instrument on the OEDIPUS-C sounding rocket. Adv. Space Res. 21, 705708.
GoughM. P., HardyD. A., OberhardtM. R., BurkeW. J., GentileL. C., McneilB., BounarK., ThompsonD. C. & RaittW. J. 1995 Correlator measurements of megahertz wave–particle interactions during electron beam operations on STS 46. J. Geophys. Res. 100, 2156121576.
GoughM. P., HardyD. A., OberhardtM. R., BurkeW. J., GentileL. C., ThompsonD. C. & RaittW. J. 1998c Spree measurements of wave–particle interactions generated by the electron guns on TSS-1 and TSS-1R. Adv. Space Res. 21, 729733.
GoughM. P., MartelliG., SmithP. N., MaehlumB. N. & VenturaG. 1980 Bunching of 8–10 keV auroral electrons near an artificial electron beam. Nature 287, 1517.
GoughM. P. & UrbanA. 1983 Auroral beam/plasma interaction observed directly. Planet. Space Sci. 31, 875883.
HasegawaA. 1976 Particle acceleration by MHD surface wave and formation of aurora. J. Geophys. Res. 81, 50835090.
HollwegJ. V. & IsenbergP. A. 2002 Generation of the fast solar wind: a review with emphasis on the resonant cyclotron interaction. J. Geophys. Res. (Space Physics) 107, 1147.
HowesG. G. 2015 A dynamical model of plasma turbulence in the solar wind. Phil. Trans. R. Soc. Lond. A 373 (2041), 20140145.
HowesG. G. 2015 Kinetic turbulence. In Magnetic Fields in Diffuse Media, Springer.
HowesG. G. 2016 The Dynamical Generation of Current Sheets in Astrophysical Plasma Turbulence. Astrophys. J. Lett. 827, L28.
HowesG. G., BaleS. D., KleinK. G., ChenC. H. K., SalemC. S. & TenbargeJ. M. 2012 The slow-mode nature of compressible wave power in solar wind turbulence. Astrophys. J. Lett. 753, L19.
HowesG. G., CowleyS. C., DorlandW., HammettG. W., QuataertE. & SchekochihinA. A. 2006 Astrophysical gyrokinetics: basic equations and linear theory. Astrophys. J. 651, 590614.
HowesG. G., CowleyS. C., DorlandW., HammettG. W., QuataertE. & SchekochihinA. A. 2008a A model of turbulence in magnetized plasmas: implications for the dissipation range in the solar wind. J. Geophys. Res. 113 (A12), A05103.
HowesG. G., DorlandW., CowleyS. C., HammettG. W., QuataertE., SchekochihinA. A. & TatsunoT. 2008b Kinetic simulations of magnetized turbulence in astrophysical plasmas. Phys. Rev. Lett. 100 (6), 065004.
HowesG. G., KleinK. G. & TenbargeJ. M. 2014 Validity of the Taylor hypothesis for linear kinetic waves in the weakly collisional solar wind. Astrophys. J. 789, 106.
HowesG. G., TenbargeJ. M., DorlandW., QuataertE., SchekochihinA. A., NumataR. & TatsunoT. 2011 Gyrokinetic simulations of solar wind turbulence from ion to electron scales. Phys. Rev. Lett. 107, 035004.
HuangC. Y., BurkeW. J., HardyD. A., GoughM. P., JamesH. G., VillalónE. & GentileL. C. 2001 Electron acceleration by megahertz waves during OEDIPUS C. J. Geophys. Res. 106, 18351848.
HuangC. Y., BurkeW. J., HardyD. A., GoughM. P., OlsonD. G., GentileL. C., GilchristB. E., BonifaziC., RaittW. J. & ThompsonD. C. 1998 Cerenkov emissions of ion acoustic-like waves generated by electron beams emitted during TSS 1R. Geophys. Res. Lett. 25, 721724.
HuiC.-H. & SeylerC. E. 1992 Electron acceleration by Alfven waves in the magnetosphere. J. Geophys. Res. 97, 39533963.
IsenbergP. A. & HollwegJ. V. 1983 On the preferential acceleration and heating of solar wind heavy ions. J. Geophys. Res. 88, 39233935.
IsenbergP. A., LeeM. A. & HollwegJ. V. 2001 The kinetic shell model of coronal heating and acceleration by ion cyclotron waves: 1. Outward propagating waves. J. Geophys. Res. 106, 56495660.
JohnsonJ. R. & ChengC. Z. 2001 Stochastic ion heating at the magnetopause due to kinetic Alfvén waves. Geophys. Res. Lett. 28, 44214424.
KarimabadiH., RoytershteynV., WanM., MatthaeusW. H., DaughtonW., WuP., ShayM., LoringB., BorovskyJ., LeonardisE. et al. 2013 Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas. Phys. Plasmas 20 (1), 012303.
KasperJ. C., AbiadR., AustinG., Balat-PichelinM., BaleS. D., BelcherJ. W., BergP., BergnerH., BerthomierM., BookbinderJ. et al. 2015 Solar wind electrons alphas and protons (SWEAP) investigation: design of the solar wind and coronal plasma instrument suite for solar probe plus. Space Sci. Rev. 204, 131186. doi:10.1007/s11214-015-0206-3.
KatohY., KitaharaM., KojimaH., OmuraY., KasaharaS., HiraharaM., MiyoshiY., SekiK., AsamuraK., TakashimaT. et al. 2013 Significance of wave–particle interaction analyzer for direct measurements of nonlinear wave–particle interactions. Ann. Geophys. 31 (3), 503512.
KeilingA. 2009 Alfvén waves and their roles in the dynamics of the earth’s magnetotail: a review. Space Sci. Rev. 142, 73156.
KeilingA., WygantJ. R., CattellC., PeriaW., ParksG., TemerinM., MozerF. S., RussellC. T. & KletzingC. A. 2002 Correlation of Alfvén wave Poynting flux in the plasma sheet at 4–7 inline-graphic $R_{E}$ with ionospheric electron energy flux. J. Geophys. Res. 107, 1132.
KennelC. F. & PetschekH. E. 1966 Limit on stably trapped particle fluxes. J. Geophys. Res. 71, 1.
KennelC. F., ScarfF. L., FredricksR. W., McgeheeJ. H. & CoronitiF. V. 1970 VLF electric field observations in the magnetosphere. J. Geophys. Res. 75, 61366152.
KimuraI., HashimotoK., MatsumotoH., MukaiT., BellT. F., InanU. S., HelliwellR. A. & KatsufrakisJ. P. 1983 EXOS-B/Siple station VLF wave–particle interaction experiments. I – general description and wave–particle correlations. J. Geophys. Res. 88, 282294.
KleinK. G., HowesG. G., TenbargeJ. M., BaleS. D., ChenC. H. K. & SalemC. S. 2012 Using synthetic spacecraft data to interpret compressible fluctuations in solar wind turbulence. Astrophys. J. 755, 159.
KleinK. G., HowesG. G., TenbargeJ. M. & PodestaJ. J. 2014 Physical interpretation of the angle-dependent magnetic helicity spectrum in the solar wind: the nature of turbulent fluctuations near the proton gyroradius scale. Astrophys. J. 785, 138.
KletzingC. A. 1994 Electron acceleration by kinetic Alfvén waves. J. Geophys. Res. 99, 1109511104.
KletzingC. A., BoundsS. R., LabelleJ. & SamaraM. 2005 Observation of the reactive component of Langmuir wave phase-bunched electrons. Geophys. Res. Lett. 32, L05106.
KletzingC. A. & MuschiettiL. 2006 Phase correlation of electrons and Langmuir waves. In Geospace Electromagnetic Waves and Radiation (ed. Labelle J. W. & Treumann R. A.), Lecture Notes in Physics, vol. 687, p. 313. Springer.
KruskalM. D. & ObermanC. R. 1958 On the stability of plasma in static equilibrium. Phys. Fluids 1, 275280.
KulsrudR. M. 1983 Mhd description of plasma. In Basic Plasma Physics I (ed. Galeev A. A. & Sudan R. N.), Handbook of Plasma Physics, vol. 1, chap. 1.4, pp. 115145. North Holland.
LandauL. D. 1946 On the vibrations of the electronic plasma. J. Phys. 10, 25.
LeamonR. J., MatthaeusW. H., SmithC. W. & WongH. K. 1998a Contribution of cyclotron-resonant damping to kinetic dissipation of interplanetary turbulence. Astrophys. J. 507, L181L184.
LeamonR. J., MatthaeusW. H., SmithC. W., ZankG. P., MullanD. J. & OughtonS. 2000 MHD-driven kinetic dissipation in the solar wind and corona. Astrophys. J. 537, 10541062.
LeamonR. J., SmithC. W., NessN. F., MatthaeusW. H. & WongH. K. 1998b Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. J. Geophys. Res. 103, 47754787.
LeamonR. J., SmithC. W., NessN. F. & WongH. K. 1999 Dissipation range dynamics: kinetic alfvén waves and the importance of inline-graphic $\unicode[STIX]{x1D6FD}_{e}$ . J. Geophys. Res. 104, 2233122344.
LiT. C., HowesG. G., KleinK. G. & TenbargeJ. M. 2016 Energy dissipation and Landau damping in two- and three-dimensional plasma turbulence. Astrophys. J. Lett. 832 (2), L24.
LysakR. L. & DumC. T. 1983 Dynamics of magnetosphere-ionosphere coupling including turbulent transport. J. Geophys. Res. 88, 365380.
LysakR. L. & LotkoW. 1996 On the kinetic dispersion relation for shear Alfvén waves. J. Geophys. Res. 101, 50855094.
ManfrediG. 1997 Long-time behavior of nonlinear landau damping. Phys. Rev. Lett. 79, 28152818.
MarkovskiiS. A. & VasquezB. J. 2011 A short-timescale channel of dissipation of the strong solar wind turbulence. Astrophys. J. 739, 22.
MatthaeusW. H. & VelliM. 2011 Who needs turbulence? A review of turbulence effects in the heliosphere and on the fundamental process of reconnection. Space Sci. Rev. 160, 145168.
MelroseD. B. 1986 Instabilities in Space and Laboratory Plasmas. Cambridge University Press.
MorrisonP. J. 1994 The energy of perturbations for Vlasov plasmas. Phys. Plasmas 1, 14471451.
MüllerD., MarsdenR. G., St. CyrO. C. & GilbertH. R. 2013 Solar orbiter. Exploring the sun-heliosphere connection. Sol. Phys. 285, 2570.
MuschiettiL., RothI. & ErgunR. 1994 Interaction of Langmuir wave packets with streaming electrons: phase-correlation aspects. Phys. Plasmas 1, 10081024.
OlivenM. N. & GurnettD. A. 1968 Microburst phenomena: 3. An association between microbursts and VLF chorus. J. Geophys. Res. 73, 23552362.
O’NeilT. 1965 Collisionless damping of nonlinear plasma oscillations. Phys. Fluids 8, 22552262.
OsmanK. T., KiyaniK. H., ChapmanS. C. & HnatB. 2014a Anisotropic intermittency of magnetohydrodynamic turbulence. Astrophys. J. Lett. 783, L27.
OsmanK. T., MatthaeusW. H., GoslingJ. T., GrecoA., ServidioS., HnatB., ChapmanS. C. & PhanT. D. 2014b Magnetic reconnection and intermittent turbulence in the solar wind. Phys. Rev. Lett. 112 (21), 215002.
OsmanK. T., MatthaeusW. H., GrecoA. & ServidioS. 2011 Evidence for inhomogeneous heating in the solar wind. Astrophys. J. Lett. 727, L11.
OsmanK. T., MatthaeusW. H., HnatB. & ChapmanS. C. 2012a Kinetic signatures and intermittent turbulence in the solar wind plasma. Phys. Rev. Lett. 108 (26), 261103.
OsmanK. T., MatthaeusW. H., WanM. & RappazzoA. F. 2012b Intermittency and local heating in the solar wind. Phys. Rev. Lett. 108 (26), 261102.
ParkC. G., ParksG. K. & LinC. S. 1981 A ground-satellite study of wave–particle correlations. J. Geophys. Res. 86, 3753.
PerriS., GoldsteinM. L., DorelliJ. C. & SahraouiF. 2012 Detection of small-scale structures in the dissipation regime of solar-wind turbulence. Phys. Rev. Lett. 109 (19), 191101.
PezziO., CamporealeE. & ValentiniF. 2016 Collisional effects on the numerical recurrence in Vlasov–Poisson simulations. Phys. Plasmas 23, 022103.
QuataertE. 1998 Particle heating by Alfvénic turbulence in hot accretion flows. Astrophys. J. 500, 978991.
QuataertE. & GruzinovA. 1999 Turbulence and particle heating in advection-dominated accretion flows. Astrophys. J. 520, 248255.
RetinòA., SundkvistD., VaivadsA., MozerF., AndréM. & OwenC. J. 2007 In situ evidence of magnetic reconnection in turbulent plasma. Nat. Phys. 3, 236238.
RosenbergT. J., HelliwellR. A. & KatsufrakisJ. P. 1971 Electron precipitation associated with discrete very-low-frequency emissions. J. Geophys. Res. 76, 84458452.
RubinA. G., BurkeW. J., GoughM. P., MachuzakJ. S., GentileL. C., HuangC. Y., HardyD. A., ThompsonD. C. & RaittW. J. 1999 Beam-induced electron modulations observed during TSS 1R. J. Geophys. Res. 104, 1725117262.
SalemC. S., HowesG. G., SundkvistD., BaleS. D., ChastonC. C., ChenC. H. K. & MozerF. S. 2012 Identification of kinetic Alfvén wave turbulence in the solar wind. Astrophys. J. Lett. 745, L9.
ScarfF. L., FredricksR. W., KennelC. F. & CoronitiF. V. 1973 Satellite studies of magnetospheric substorms on August 15, 1968: 8. Ogo 5 plasma wave observations. J. Geophys. Res. 78, 3119.
SchekochihinA. A., CowleyS. C., DorlandW., HammettG. W., HowesG. G., QuataertE. & TatsunoT. 2009 Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. Suppl. 182, 310377.
SchriverD., Ashour-AbdallaM., StrangewayR. J., RichardR. L., KleztingC., DotanY. & WygantJ. 2003 FAST/polar conjunction study of field-aligned auroral acceleration and corresponding magnetotail drivers. J. Geophys. Res. 108, 8020.
SchroederJ. W. R., SkiffF., KletzingC. A., HowesG. G., CarterT. A. & DorfmanS. 2016 Direct measurement of electron sloshing of an inertial Alfvén wave. Geophys. Res. Lett. 43, 47014707.
ServidioS., GrecoA., MatthaeusW. H., OsmanK. T. & DmitrukP. 2011 Statistical association of discontinuities and reconnection in magnetohydrodynamic turbulence. J. Geophys. Res. 116, 9102.
ShawR. R. & GurnettD. A. 1975 Electrostatic noise bands associated with the electron gyrofrequency and plasma frequency in the outer magnetosphere. J. Geophys. Res. 80, 42594271.
SpigerR. J., MurphreeJ. S., AndersonH. R. & LoewensteinR. F. 1976 Modulation of auroral electron fluxes in the frequency range 50 kHz to 10 MHz. J. Geophys. Res. 81, 12691278.
SpigerR. J., OehmeD., LoewensteinR. F., MurphreeJ., AndersonH. R. & AndersonR. 1974 A detector for high frequency modulation in auroral particle fluxes. Rev. Sci. Instrum. 45, 12141220.
StasiewiczK., BellanP., ChastonC., KletzingC., LysakR., MaggsJ., PokhotelovO., SeylerC., ShuklaP., StenfloL. et al. 2000 Small scale Alfvénic structure in the aurora. Space Sci. Rev. 92, 423533.
StixT. H. 1992 Waves in Plasmas. American Institute of Physics.
SundkvistD., RetinòA., VaivadsA. & BaleS. D. 2007 Dissipation in turbulent plasma due to reconnection in thin current sheets. Phys. Rev. Lett. 99 (2), 025004.
TaylorG. I. 1938 The spectrum of turbulence. Proc. R. Soc. Lond. A 164, 476490.
TenbargeJ. M. & HowesG. G. 2013 Current sheets and collisionless damping in kinetic plasma turbulence. Astrophys. J. Lett. 771, L27.
TenbargeJ. M., PodestaJ. J., KleinK. G. & HowesG. G. 2012 Interpreting magnetic variance anisotropy measurements in the solar wind. Astrophys. J. 753, 107.
ToldD., JenkoF., TenbargeJ. M., HowesG. G. & HammettG. W. 2015 Multiscale nature of the dissipation range in gyrokinetic simulations of Alfvénic turbulence. Phys. Rev. Lett. 115 (2), 025003.
UritskyV. M., PouquetA., RosenbergD., MininniP. D. & DonovanE. F. 2010 Structures in magnetohydrodynamic turbulence: detection and scaling. Phys. Rev. E 82 (5), 056326.
VaivadsA., RetinA., SoucekJ., KhotyaintsevYu. V., ValentiniF., EscoubetC. P., AlexandrovaO., AndrM., BaleS. D., BalikhinM. et al. 2016 Turbulence heating observer satellite mission proposal. J. Plasma Phys. 82 (5), 905820501.
VillaniC. 2014 Particle systems and nonlinear Landau dampinga. Phys. Plasmas 21 (3), 030901.
VoitenkoY. & GoossensM. 2004 Excitation of kinetic Alfvén turbulence by MHD waves and energization of space plasmas. Nonlinear Process. Geophys. 11, 535543.
WanM., MatthaeusW. H., KarimabadiH., RoytershteynV., ShayM., WuP., DaughtonW., LoringB. & ChapmanS. C. 2012 Intermittent dissipation at kinetic scales in collisionless plasma turbulence. Phys. Rev. Lett. 109 (19), 195001.
WangX., TuC., HeJ., MarschE. & WangL. 2013 On intermittent turbulence heating of the solar wind: differences between tangential and rotational discontinuities. Astrophys. J. Lett. 772, L14.
WatkinsN. W., BatherJ. A., ChapmanS. C., MouikisC. G., GoughM. P., WygantJ. R., HardyD. A., CollinH. L., JohnstoneA. D. & AndersonR. R. 1996 Suspected wave–particle interactions coincident with a pancake distribution as seen by the CRRES spacecraft. Adv. Space Res. 17, 8387.
WhiteR., ChenL. & LinZ. 2002 Resonant plasma heating below the cyclotron frequency. Phys. Plasmas 9, 18901897.
WoolliscroftL. J. C., AlleyneH. S. C., DunfordC. M., SumnerA., ThompsonJ. A., WalkerS. N., YearbyK. H., BuckleyA., ChapmanS. & GoughM. P. 1997 The digital wave-processing experiment on cluster. Space Sci. Rev. 79, 209231.
WuP., PerriS., OsmanK., WanM., MatthaeusW. H., ShayM. A., GoldsteinM. L., KarimabadiH. & ChapmanS. 2013 Intermittent heating in solar wind and kinetic simulations. Astrophys. J. Lett. 763, L30.
ZhdankinV., UzdenskyD. A. & BoldyrevS. 2015a Temporal analysis of dissipative structures in magnetohydrodynamic turbulence. Astrophys. J. 811, 6.
ZhdankinV., UzdenskyD. A. & BoldyrevS. 2015b Temporal intermittency of energy dissipation in magnetohydrodynamic turbulence. Phys. Rev. Lett. 114 (6), 065002.
ZhdankinV., UzdenskyD. A., PerezJ. C. & BoldyrevS. 2013 Statistical analysis of current sheets in three-dimensional magnetohydrodynamic turbulence. Astrophys. J. 771, 124.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Plasma Physics
  • ISSN: 0022-3778
  • EISSN: 1469-7807
  • URL: /core/journals/journal-of-plasma-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 6
Total number of PDF views: 85 *
Loading metrics...

Abstract views

Total abstract views: 311 *
Loading metrics...

* Views captured on Cambridge Core between 12th January 2017 - 19th October 2017. This data will be updated every 24 hours.