Skip to main content
×
×
Home

Dynamics of positrons during relativistic electron runaway

  • O. Embréus (a1), L. Hesslow (a1), M. Hoppe (a1), G. Papp (a2), K. Richards (a1) and T. Fülöp (a1)...
Abstract

Sufficiently strong electric fields in plasmas can accelerate charged particles to relativistic energies. In this paper we describe the dynamics of positrons accelerated in such electric fields, and calculate the fraction of created positrons that become runaway accelerated, along with the amount of radiation that they emit. We derive an analytical formula that shows the relative importance of the different positron production processes, and show that, above a certain threshold electric field, the pair production by photons is lower than that by collisions. We furthermore present analytical and numerical solutions to the positron kinetic equation; these are applied to calculate the fraction of positrons that become accelerated or thermalized, which enters into rate equations that describe the evolution of the density of the slow and fast positron populations. Finally, to indicate operational parameters required for positron detection during runaway in tokamak discharges, we give expressions for the parameter dependencies of detected annihilation radiation compared to bremsstrahlung detected at an angle perpendicular to the direction of runaway acceleration. Using the full leading-order pair-production cross-section, we demonstrate that previous related work has overestimated the collisional pair production by at least a factor of four.

Copyright
Corresponding author
Email address for correspondence: embreus@chalmers.se
References
Hide All
Alwall, J., Frederix, R., Frixione, S., Hirschi, V., Maltoni, F., Mattelaer, O., Shao, H.-S., Stelzer, T., Torrielli, P. & Zaro, M. 2014 The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. J. High Energy Phys. 7, 79.
Anderson, C. D. 1932 The apparent existence of easily deflectable positives. Science 76 (1967), 238239.
Briggs, M. S., Connaughton, V., Wilson-Hodge, C., Preece, R. D., Fishman, G. J., Kippen, R. M., Bhat, P. N., Paciesas, W. S., Chaplin, V. L., Meegan, C. A. et al. 2011 Electron–positron beams from terrestrial lightning observed with Fermi GBM. Geophys. Res. Lett. 38 (2), l02808.
Charlton, M. & Humberston, J. 2001 Positron Physics. Cambridge University Press.
Chen, H., Wilks, S. C., Bonlie, J. D., Liang, E. P., Myatt, J., Price, D. F., Meyerhofer, D. D. & Beiersdorfer, P. 2009 Relativistic positron creation using ultraintense short pulse lasers. Phys. Rev. Lett. 102, 105001.
Connor, J. & Hastie, R. 1975 Relativistic limitations on runaway electrons. Nucl. Fusion 15, 415.
Dreicer, H. 1959 Electron and ion runaway in a fully ionized gas I. Phys. Rev. 115, 238249.
Dwyer, J. R. 2012 The relativistic feedback discharge model of terrestrial gamma ray flashes. J. Geophys. Res. 117 (A2), a02308.
Dwyer, J. R. & Uman, M. A. 2014 The physics of lightning. Phys. Rep. 534 (4), 147241.
Embréus, O., Stahl, A. & Fülöp, T. 2016 Effect of bremsstrahlung radiation emission on fast electrons in plasmas. New J. Phys. 18 (9), 093023.
Embréus, O., Stahl, A. & Fülöp, T. 2018 On the relativistic large-angle electron collision operator for runaway avalanches in plasmas. J. Plasma Phys. 84 (1), 905840102.
Fülöp, T. & Papp, G. 2012 Runaway positrons in fusion plasmas. Phys. Rev. Lett. 108, 225003.
Fülöp, T., Pokol, G., Helander, P. & Lisak, M. 2006 Destabilization of magnetosonic-whistler waves by a relativistic runaway beam. Phys. Plasmas 13 (6), 062506.
Gabrielse, G., Bowden, N. S., Oxley, P., Speck, A., Storry, C. H., Tan, J. N., Wessels, M., Grzonka, D., Oelert, W., Schepers, G. et al. 2002 Background-free observation of cold antihydrogen with field-ionization analysis of its states. Phys. Rev. Lett. 89, 213401.
Gryaznykh, D. 1998 Cross section for the production of electron–positron pairs by electrons in the field of a nucleus. Phys. Atom. Nucl. 61 (3), 394399.
Guanying, Y., Liu, J., Xie, J. & Li, J. 2017 Detection of tokamak plasma positrons using annihilation photons. Fusion Engng Des. 118, 124128.
Gurevich, A. V. & Zybin, K. P. 2001 Runaway breakdown and electric discharges in thunderstorms. Phys.-Usp. 44 (11), 11191140.
Haug, E. 1975 Bremsstrahlung and pair production in the field of free electrons. Zeitsch. für Natur. A 30 (9), 10991113.
Heitler, W. 1954 The Quantum Theory of Radiation, vol. 86. Courier Corporation.
Helander, P., Eriksson, L.-G. & Andersson, F. 2002 Runaway acceleration during magnetic reconnection in tokamaks. Plasma Phys. Control. Fusion 44, B247B262.
Helander, P. & Ward, D. J. 2003 Positron creation and annihilation in tokamak plasmas with runaway electrons. Phys. Rev. Lett. 90, 135004.
Hesslow, L., Embréus, O., Stahl, A., Dubois, T. C., Papp, G., Newton, S. L. & Fülöp, T. 2017 Effect of partially screened nuclei on fast-electron dynamics. Phys. Rev. Lett. 118, 255001.
Hesslow, L., Embréus, O., Wilkie, G. J., Papp, G. & Fülöp, T. 2018 Effect of partially ionized impurities and radiation on the effective critical electric field for runaway generation. Plasma Phys. Control. Fusion 60, 074010.
Hirvijoki, E., Pusztai, I., Decker, J., Embréus, O., Stahl, A. & Fülöp, T. 2015 Radiation reaction induced non-monotonic features in runaway electron distributions. J. Plasma Phys. 81 (5), 475810502.
Hollmann, E. M., Parks, P. B., Commaux, N., Eidietis, N. W., Moyer, R. A., Shiraki, D., Austin, M. E., Lasnier, C. J., Paz-Soldan, C. & Rudakov, D. L. 2015 Measurement of runaway electron energy distribution function during high-z gas injection into runaway electron plateaus in DIII-D. Phys. Plasmas 22 (5), 056108.
Hunt, A. W., Cassidy, D. B., Selim, F. A., Haakenaasen, R., Cowan, T. E., Howell, R. H., Lynn, K. G. & Golovchenko, J. A. 1999 Spatial sampling of crystal electrons by in-flight annihilation of fast positrons. Nature 402, 157.
Jayakumar, R., Fleischmann, H. & Zweben, S. 1993 Collisional avalanche exponentiation of runaway electrons in electrified plasmas. Phys. Lett. A 172, 447451.
Landau, L. & Lifshitz, E. 1983 Quantum Electrodynamics. Pergamon.
Landreman, M., Stahl, A. & Fülöp, T. 2014 Numerical calculation of the runaway electron distribution function and associated synchrotron emission. Comput. Phys. Commun. 185 (3), 847855.
Lehtinen, N. G., Bell, T. F. & Inan, U. S. 1999 Monte Carlo simulation of runaway MeV electron breakdown with application to red sprites and terrestrial gamma ray flashes. J. Geophys. Res. 104 (A11), 24699.
Liu, C. & Wang, H. 2009 Reconnection electric field and hardness of X-Ray emission of solar flares. Astrophys. J. 696, L27L31.
Liu, J., Qin, H., Fisch, N. J., Teng, Q. & Wang, X. 2014 What is the fate of runaway positrons in tokamaks?. Phys. Plasmas 21 (6), 064503. doi:10.1063/1.4882435.
Murphy, R. J., Share, G. H., Skibo, J. G. & Kozlovsky, B. 2005 The physics of positron annihilation in the solar atmosphere. Astrophys. J. Suppl. Ser. 161 (2), 495.
Pautasso, G., Bernert, M., Dibon, M., Duval, B., Dux, R., Fable, E., Fuchs, J., Conway, G., Giannone, L., Gude, A. et al. 2016 Disruption mitigation by injection of small quantities of noble gas in ASDEX Upgrade. Plasma Phys. Control. Fusion 59 (1), 014046.
Paz-Soldan, C., Cooper, C. M., Aleynikov, P., Pace, D. C., Eidietis, N. W., Brennan, D. P., Granetz, R. S., Hollmann, E. M., Liu, C., Lvovskiy, A. et al. 2017 Spatiotemporal evolution of runaway electron momentum distributions in tokamaks. Phys. Rev. Lett. 118, 255002.
Prantzos, N., Boehm, C., Bykov, A. M., Diehl, R., Ferrière, K., Guessoum, N., Jean, P., Knoedlseder, J., Marcowith, A., Moskalenko, I. V. et al. 2011 The 511 keV emission from positron annihilation in the galaxy. Rev. Mod. Phys. 83, 10011056.
Priest, E. & Forbes, T. 2002 The magnetic nature of solar flares. Astron. Astrophys. Rev. 10 (4), 313377.
Raichle, M. E. 1985 Positron emission tomography: progress in brain imaging. Nature 317, 574.
Rosenbluth, M. & Putvinski, S. 1997 Theory for avalanche of runaway electrons in tokamaks. Nucl. Fusion 37, 13551362.
Sarri, G. 2015 Laser-driven generation of high-quality ultra-relativistic positron beams. J. Plasma Phys. 81 (2), 415810202.
Sokolov, Y. 1979 ‘Multiplication’ of accelerated electrons in a tokamak. JETP Lett. 29, 218221.
Solodov, A. & Betti, R. 2008 Stopping power and range of energetic electrons in dense plasmas of fast-ignition fusion targets. Phys. Plasmas 15 (4), 042707.
Stahl, A., Embréus, O., Papp, G., Landreman, M. & Fülöp, T. 2016 Kinetic modelling of runaway electrons in dynamic scenarios. Nucl. Fusion 56 (11), 112009.
Stahl, A., Hirvijoki, E., Decker, J., Embréus, O. & Fülöp, T. 2015 Effective critical electric field for runaway electron generation. Phys. Rev. Lett. 114, 115002.
Surko, C. M. & Greaves, R. G. 2004 Emerging science and technology of antimatter plasmas and trap-based beams. Phys. Plasmas 11 (5), 23332348.
Tsuchiya, H., Enoto, T., Yamada, S., Yuasa, T., Nakazawa, K., Kitaguchi, T., Kawaharada, M., Kokubun, M., Kato, H., Okano, M. et al. 2011 Long-duration ray emissions from 2007 and 2008 winter thunderstorms. J. Geophys. Res. 116 (D9), d09113.
Vodopiyanov, I., Dwyer, J. R., Cramer, E. S., Lucia, R. & Rassoul, H. K. 2015 The effect of direct electron–positron pair production on relativistic feedback rates. J. Geophys. Res. 120 (1), 800806.
Wilks, S. C., Langdon, A. B., Cowan, T. E., Roth, M., Singh, M., Hatchett, S., Key, M. H., Pennington, D., MacKinnon, A. & Snavely, R. A. 2001 Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas 8 (2), 542549.
Wilson, C. T. R. 1925 The acceleration of -particles in strong electric fields such as those of thunderclouds. Math. Proc. Cambridge Philos. Soc. 22, 534.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Plasma Physics
  • ISSN: 0022-3778
  • EISSN: 1469-7807
  • URL: /core/journals/journal-of-plasma-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed