Skip to main content
    • Aa
    • Aa

Electron interactions and quantum plasma physics

  • Elizabeth A. Rauscher (a1)

The ‘quantum electrodynamics’ of the scattering of radiation from a fully ionized, interacting plasma is to be considered.

The plasma particle interaction must properly be treated quantum mechanically when the electron plasma wave phonon energies are comparable to or greater than the mean random electron energies and/or when the phonon momenta are of the order of magnitude or greater than the average electron momenta in the plasma.

In these two circumstances or either one of them, the plasma particle inter action must be treated in a quantum mechanical manner. The ‘solid-state’ plasma recently discussed by D.E.McCumber is an example of a quantum plasma.

Whether a classical or a quantum plasma is considered, the collective properties, as well as the single-particle properties, need to be considered. The collective properties of the plasma become important when it interacts with a radiation field in the case where the electron plasma frequency, ωp, is of the same order of magnitude, or exceeds, the operating radiation frequency ω, i.e. ωp≥ω.

A criterion to distinguish the properties of a plasma as to whether it is classical or quantum mechanical in nature can be defined in terms of three fundamental lengths of the electron gas. These definitions hold for a one-component plasma. They are: the classical length βe2, the Debye screening length and the thermal de Broglie wavelength defined as 1/kT. From these three quantities, we can define two dimensionless parameters. They are the classical parameter and the quantum parameter δ=λ/λD which is a measure of the quantum effects. For a quantum plasma δ>1 and in the classical limit (h = 0),δ=0, Λ<1.

When we take into account the collective behaviour characterized by the plasma oscillations, screening effects are an automatic aspect of the electron plasma gas.

It is hoped that the present review article will provide the background material for general understanding of the field and easy access to the current literature. It is also hoped that the present discussion will establish greater interest in this subject.

As an example of a calculation of plasma properties, a calculation of the generalized dielectric constant for both a low-density plasma in the classical limit and a high-density plasma in the quantum mechanical limit is performed and compared in a suitable manner.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

R. Balescu 1961 Phys. Fluids 4, 94.

J. Bardeen & B. Pines 1955 Phys. Rev. 99, 1140.

D. Bohm & E. P. Gross 1949 bPhys. Rev. 75, 1864.

D. Bohm & D. Pines 1951 Phys. Rev. 82, 625.

R. Brout 1961 J. Nucl. Energy, part C; Plasma Phys. 2, 46.

W. R. Chappell 1966 J. Math. Phys. 7, 1153.

H. Cheng & Y. C. Lee 1966 Phys. Rev. 142, 104.

J. Dawson & C. Oberman 1962 Phys. Fluids 5, 517.

N. Q. Dong 1966 Phys. Rev. 148, 148.

D. F. DuBois 1959 Ann. Phys. 7, 174.

D. F. DuBois 1959 Ann. Phys. 8, 24.

D. F. DuBois & V. Gilinsky 1964 Phys. Rev. 133, A 1317.

D. F. DuBois , V. Gilinsky & M. G. Kivelson 1962 Phys. Rev. Lett. 8, 419.

D. F. DuBois , V. Gilinsky & M. G. Kivelson 1963 Phys. Rev. 129, 2376.

L. Dworin 1966 Ann. Phys. 39, 43.

F. J. Dyson 1949 Phys. Rev. 75, 1736.

F. J. Dyson 1951 Phys. Rev. 83, 608.

R. P. Feynman 1949 Phys. Rev. 76, 769.

M. Gell-Mann & K. A. Brueckner 1957 Phys. Rev. 106, 364.

A. E. Glassgold 1961 J. Nucl. Energy, part C; Plasma Phys. 2, 51.

M. V. Goldman 1966 aAnn. Phys. 38, 95.

R. Goldman & L. Oster 1963 Phys. Rev. 129, 1469.

D. Gorman & D. Montgomery 1963 Phys. Rev. 131, 7.

H. A. Gould & H. E. DeWitt 1967 Phys. Rev. 155, 68.

W. T. Grandy Jr, & F. Mohling 1965 Ann. Phys. 34, 424.

R. A. Guyer & J. A. Krumhaush 1966 Phys. Rev. 148, 766.

N. J. Horing 1965 Ann. Phys. 31, 1.

S. Ichimaru 1962 Ann. Phys. 20, 78.

R. E. Kidder & H. E. DeWitt 1961 J. Nucl. Energy, part C; Plasma Phys. 2, 218.

H. B. Levine 1961 J. Nucl. Energy, part C; Plasma Phys. 2, 206.

P. Mallozzi & H. Margenaw 1966 Ann. Phys. 38, 177.

K. S. Masterton Jr, & K. Sawada 1964 Phys. Rev. 133, A 1234.

D. E. McCumber 1966 Rev. Mod. Phys. 38, 494.

D. E. McCumber 1967 Phys. Rev. 154, 790.

N. D. Mermin & E. Canel 1964 Ann. Phys. 26, 247.

D. Pines 1961 bJ. Nucl. Energy, part C; Plasma Phys. 2, 5.

T. Pradhan 1962 Ann. Phys. 17, 418.

A. Pytte & R. Blanken 1964 Phys. Rev. 133, A 668.

J. J. Quinn & R. A. Ferrell 1961 J. Nucl. Energy, part C; Plasma Phys. 2, 18.

S. Rand 1964 Phys. Fluids 7, 64.

S. Rand 1965 Phys. Fluids 8, 143.

T. M. Rice 1965 Ann. Phys. 31, 100.

A. Ron & N. Tzoar 1962 Phys. Rev. 131, 12.

A. Ron & N. Tzoar 1963 aPhys. Rev. 131, 1943.

A. Ron & N. Tzoar 1963 bPhys. Rev. Lett. 10. 45.

A. Ron & N. Tzoar 1964 Phys. Rev. 133, A 1378.

K. Sawada 1957 Phys. Rev. 106, 372.

C. Schmidt 1961 J. Nucl. Energy, part C; Plasma Phys. 3, 156.

O. Theimer 1963 Ann. Phys. 22, 102.

D. J. Thouless 1961 The Quantum Mechanics of Many-body Systems (Pure and Applied Physics, London, England).

S. Weinberg 1962 Phys. Rev. 126, 1899.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Plasma Physics
  • ISSN: 0022-3778
  • EISSN: 1469-7807
  • URL: /core/journals/journal-of-plasma-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 7 *
Loading metrics...

Abstract views

Total abstract views: 96 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th May 2017. This data will be updated every 24 hours.