Skip to main content
×
×
Home

Electron interactions and quantum plasma physics

  • Elizabeth A. Rauscher (a1)
Abstract

The ‘quantum electrodynamics’ of the scattering of radiation from a fully ionized, interacting plasma is to be considered.

The plasma particle interaction must properly be treated quantum mechanically when the electron plasma wave phonon energies are comparable to or greater than the mean random electron energies and/or when the phonon momenta are of the order of magnitude or greater than the average electron momenta in the plasma.

In these two circumstances or either one of them, the plasma particle inter action must be treated in a quantum mechanical manner. The ‘solid-state’ plasma recently discussed by D.E.McCumber is an example of a quantum plasma.

Whether a classical or a quantum plasma is considered, the collective properties, as well as the single-particle properties, need to be considered. The collective properties of the plasma become important when it interacts with a radiation field in the case where the electron plasma frequency, ωp, is of the same order of magnitude, or exceeds, the operating radiation frequency ω, i.e. ωp≥ω.

A criterion to distinguish the properties of a plasma as to whether it is classical or quantum mechanical in nature can be defined in terms of three fundamental lengths of the electron gas. These definitions hold for a one-component plasma. They are: the classical length βe2, the Debye screening length and the thermal de Broglie wavelength defined as 1/kT. From these three quantities, we can define two dimensionless parameters. They are the classical parameter and the quantum parameter δ=λ/λD which is a measure of the quantum effects. For a quantum plasma δ>1 and in the classical limit (h = 0),δ=0, Λ<1.

When we take into account the collective behaviour characterized by the plasma oscillations, screening effects are an automatic aspect of the electron plasma gas.

It is hoped that the present review article will provide the background material for general understanding of the field and easy access to the current literature. It is also hoped that the present discussion will establish greater interest in this subject.

As an example of a calculation of plasma properties, a calculation of the generalized dielectric constant for both a low-density plasma in the classical limit and a high-density plasma in the quantum mechanical limit is performed and compared in a suitable manner.

Copyright
References
Hide All
Adams, J. B. & Ruderman, M. A. 1962 Neutrino Pair Emission by a Stellar Plasma, UCRL-10343.
Balescu, R. 1961 Phys. Fluids 4, 94.
Bardeen, J. & Pines, B. 1955 Phys. Rev. 99, 1140.
Bekefi, C. 1966 Radiation Processes in Plasmas. New York: John Wiley and Sons Inc.
Bohm, D. & Gross, E. P. 1949 a Phys. Rev. 75, 1851.
Bohm, D. & Gross, E. P. 1949 b Phys. Rev. 75, 1864.
Bohm, D. & Pines, D. 1951 Phys. Rev. 82, 625.
Brout, R. 1961 J. Nucl. Energy, part C; Plasma Phys. 2, 46.
Chappell, W. R. 1966 J. Math. Phys. 7, 1153.
Cheng, H. & Lee, Y. C. 1966 Phys. Rev. 142, 104.
Dawson, J. & Oberman, C. 1962 Phys. Fluids 5, 517.
Denisse, J. F. & Delcroix, J. L. 1963 Plasma Waves, Interscience Publishers Inc.
DeWitt, H. 1968 Plasma Transport Theory (to be published).
Dong, N. Q. 1966 Phys. Rev. 148, 148.
DuBois, D. F. 1959 Ann. Phys. 7, 174.
DuBois, D. F. 1959 Ann. Phys. 8, 24.
DuBois, D. F. & Gilinsky, V. 1964 Phys. Rev. 133, A 1317.
DuBois, D. F., Gilinsky, V. & Kivelson, M. G. 1962 Phys. Rev. Lett. 8, 419.
DuBois, D. F., Gilinsky, V. & Kivelson, M. G. 1963 Phys. Rev. 129, 2376.
Dworin, L. 1966 Ann. Phys. 39, 43.
Dyson, F. J. 1949 Phys. Rev. 75, 1736.
Dyson, F. J. 1951 Phys. Rev. 83, 608.
Fain, B. V. M. & Khanin, Ya. I. 1967 Quantum Electrons. New York: Pergamon Press Inc.
Feynman, R. P. 1949 Phys. Rev. 76, 769.
Garrison, J.C. 1964 UCRL-12158.
Gartenhaus, S. 1964 Elements of Plasma Physics. New York: Holt, Rinehart and Winston.
Gell-Mann, M. 1957 Phys. Rev. 106, 369.
Gell-Mann, M. & Brueckner, K. A. 1957 Phys. Rev. 106, 364.
Glassgold, A. E. 1961 J. Nucl. Energy, part C; Plasma Phys. 2, 51.
Goldman, M. V. 1966 a Ann. Phys. 38, 95.
Goldman, M. V. 1966 b Ann. Phys. 38, 117.
Goldman, R. & Oster, L. 1963 Phys. Rev. 129, 1469.
Gorman, D. & Montgomery, D. 1963 Phys. Rev. 131, 7.
Gould, H. A. & DeWitt, H. E. 1967 Phys. Rev. 155, 68.
Grandy, W. T. Jr, & Mohling, F. 1965 Ann. Phys. 34, 424.
Guyer, R. A. & Krumhaush, J. A. 1966 Phys. Rev. 148, 766.
Horing, N. J. 1965 Ann. Phys. 31, 1.
Ichimaru, S. 1962 Ann. Phys. 20, 78.
Kidder, R. E. & DeWitt, H. E. 1961 J. Nucl. Energy, part C; Plasma Phys. 2, 218.
Kirzhnits, D. A. 1967 Field Theoretical Methods in Many-Body Systems. New York: Pergamon Press Inc.
Leontovich, M. A. (Editor) 1965 Reviews of Plasma Physics, volume 1. New York: Consultants Bureau.
Levine, H. B. 1961 J. Nucl. Energy, part C; Plasma Phys. 2, 206.
Mallozzi, P. & Margenaw, H. 1966 Ann. Phys. 38, 177.
Masterton, K. S. Jr, & Sawada, K. 1964 Phys. Rev. 133, A 1234.
McCumber, D. E. 1966 Rev. Mod. Phys. 38, 494.
McCumber, D. E. 1967 Phys. Rev. 154, 790.
Mermin, N. D. & Canel, E. 1964 Ann. Phys. 26, 247.
Northrop, T. G. 1963 The Adiabatic Motion of Charged Particles. New York: Interscience Publishers Inc.
Perel, V. I. & Ellasberg, G. M. 1962 Soviet Phys. JETP 14, 633.
Pines, D. 1961 a The many-body problem. In Frontiers in Physics, W. A. Benjamin Inc.
Pines, D. 1961 b J. Nucl. Energy, part C; Plasma Phys. 2, 5.
Pradhan, T. 1962 Ann. Phys. 17, 418.
Pytte, A. & Blanken, R. 1964 Phys. Rev. 133, A 668.
Quinn, J. J. & Ferrell, R. A. 1961 J. Nucl. Energy, part C; Plasma Phys. 2, 18.
Rand, S. 1964 Phys. Fluids 7, 64.
Rand, S. 1965 Phys. Fluids 8, 143.
Rice, T. M. 1965 Ann. Phys. 31, 100.
Ron, A. & Tzoar, N. 1962 Phys. Rev. 131, 12.
Ron, A. & Tzoar, N. 1963 a Phys. Rev. 131, 1943.
Ron, A. & Tzoar, N. 1963 b Phys. Rev. Lett. 10. 45.
Ron, A. & Tzoar, N. 1964 Phys. Rev. 133, A 1378.
Sawada, K. 1957 Phys. Rev. 106, 372.
Schmidt, C. 1961 J. Nucl. Energy, part C; Plasma Phys. 3, 156.
Schweber, S. S. 1961 Introduction to Relativistic Quantum Field Theory. Illinois: Row, Peterson and Co.
Spitzer, L. Jr, 1962 Physics of Fully Ionized Gases. New York: Interscience Publishers Inc.
Stack, J. D. & Sessler, A. M. 1963 UCRL-10628.
Theimer, O. 1963 Ann. Phys. 22, 102.
Thouless, D. J. 1961 The Quantum Mechanics of Many-body Systems (Pure and Applied Physics, London, England).
Tsytovich, V. N. 1961 Soviet Phys. JETP 13, 1249.
Weinberg, S. 1962 Phys. Rev. 126, 1899.
Ziman, J. M. 1960 Electrons and Phonons. Oxford University Press.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Plasma Physics
  • ISSN: 0022-3778
  • EISSN: 1469-7807
  • URL: /core/journals/journal-of-plasma-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed