Skip to main content Accesibility Help
×
×
Home

Electrostatic potential variations on stellarator magnetic surfaces in low collisionality regimes

  • Iván Calvo (a1), José Luis Velasco (a1), Félix I. Parra (a2) (a3), J. Arturo Alonso (a1) and José Manuel García-Regaña (a1)...
Abstract

The component of the neoclassical electrostatic potential that is non-constant on the magnetic surface, that we denote by $\tilde{\unicode[STIX]{x1D711}}$ , can affect radial transport of highly charged impurities, and this has motivated its inclusion in some modern neoclassical codes. The number of neoclassical simulations in which $\tilde{\unicode[STIX]{x1D711}}$ is calculated is still scarce, partly because they are usually demanding in terms of computational resources, especially at low collisionality. In this paper the size, the scaling with collisionality and with aspect ratio and the structure of $\tilde{\unicode[STIX]{x1D711}}$ on the magnetic surface are analytically derived in the $1/\unicode[STIX]{x1D708}$ , $\sqrt{\unicode[STIX]{x1D708}}$ and superbanana-plateau regimes of stellarators close to omnigeneity; i.e. stellarators that have been optimized for neoclassical transport. It is found that the largest $\tilde{\unicode[STIX]{x1D711}}$ that the neoclassical equations admit scales linearly with the inverse aspect ratio and with the size of the deviation from omnigeneity. Using a model for a perturbed omnigenous configuration, the analytical results are verified and illustrated with calculations by the code KNOSOS. The techniques, results and numerical tools employed in this paper can be applied to neoclassical transport problems in tokamaks with broken axisymmetry.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Electrostatic potential variations on stellarator magnetic surfaces in low collisionality regimes
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Electrostatic potential variations on stellarator magnetic surfaces in low collisionality regimes
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Electrostatic potential variations on stellarator magnetic surfaces in low collisionality regimes
      Available formats
      ×
Copyright
Corresponding author
Email address for correspondence: ivan.calvo@ciemat.es
References
Hide All
Abel, N. H. 1826 Auflösen einer mechanischen Aufgabe. J. Reine Angew. Math. 1, 153.
Alonso, J. A., Velasco, J. L., Calvo, I., Estrada, T., Fontdecaba, J. M., García-Regaña, J. M., Geiger, J., Landreman, M., McCarthy, K. J., Medina, F. et al. 2016 Parallel impurity dynamics in the TJ-II stellarator. Plasma Phys. Control. Fusion 58, 074009.
Arévalo, J., Alonso, J. A., McCarthy, K. J., Velasco, J. L., García-Regaña, J. M. & Landreman, M. 2014 Compressible impurity flow in the TJ-II stellarator. Nucl. Fusion 54, 013008.
Beidler, C. D., Allmaier, K., Isaev, M. Yu., Kasilov, S. V., Kernbichler, W., Leitold, G. O., Maassberg, H., Mikkelsen, D. R., Murakami, S., Schmidt, M. et al. 2011 Benchmarking of the mono-energetic transport coefficients – results from the international collaboration on neoclassical transport in stellarators (ICNTS). Nucl. Fusion 51, 076001.
Boozer, A. H. 1981 Plasma equilibrium with rational magnetic surfaces. Phys. Fluids 24, 1999.
Burhenn, R., Feng, Y., Ida, K., Maassberg, H., McCarthy, K. J., Kalinina, D., Kobayashi, M., Morita, S., Nakamura, Y., Nozato, H. et al. 2009 On impurity handling in high performance stellarator/heliotron plasmas. Nucl. Fusion 49, 065005.
Calvo, I., Parra, F. I., Velasco, J. L. & Alonso, J. A. 2013 Stellarators close to quasisymmetry. Plasma Phys. Control. Fusion 55, 125014.
Calvo, I., Parra, F. I., Alonso, J. A. & Velasco, J. L. 2014 Optimizing stellarators for large flows. Plasma Phys. Control. Fusion 56, 094003.
Calvo, I., Parra, F. I., Velasco, J. L. & Alonso, J. A. 2015 Flow damping in stellarators close to quasisymmetry. Plasma Phys. Control. Fusion 57, 014014.
Calvo, I., Parra, F. I., Velasco, J. L. & Alonso, J. A. 2017 The effect of tangential drifts on neoclassical transport in stellarators close to omnigeneity. Plasma Phys. Control. Fusion 59, 055014.
Calvo, I., Parra, F. I., Velasco, J. L., Alonso, J. A. & García-Regaña, J. M.2018 Stellarator impurity flux driven by electric fields tangent to magnetic surfaces. arXiv:1803.05691.
Cary, J. R. & Shasharina, S. G. 1997 Omnigenity and quasihelicity in helical plasma confinement systems. Phys. Plasmas 4, 3323.
Dewar, R. L. & Hudson, S. R. 1998 Stellarator symmetry. Physica D 112, 275.
Galeev, A. A. & Sagdeev, R. Z. 1979 Theory of neoclassical diffusion. In Reviews of Plasma Physics (ed. Leontovich, M. A.), vol. 7, p. 257. Consultants Bureau.
García-Regaña, J. M., Kleiber, R., Beidler, C. D., Turkin, Y., Maassberg, H. & Helander, P. 2013 On neoclassical impurity transport in stellarator geometry. Plasma Phys. Control. Fusion 55, 074008.
García-Regaña, J. M., Beidler, C. D., Kleiber, R., Helander, P., Mollén, A., Alonso, J. A., Landreman, M., Maassberg, H., Smith, H. M., Turkin, Y. et al. 2017 Electrostatic potential variation on the flux surface and its impact on impurity transport. Nucl. Fusion 57, 056004.
García-Regaña, J. M., Estrada, T., Calvo, I., Velasco, J. L., Alonso, J. A., Carralero, D., Kleiber, R., Landreman, M., Mollén, A., Sánchez, E. et al. 2018 On-surface potential and radial electric field variations in electron root stellarator plasmas. arXiv:1804.10424.
Hall, L. S. & McNamara, B. 1975 Three-dimensional equilibrium of the anisotropic, finite-pressure guiding-center plasma: theory of the magnetic plasma. Phys. Fluids 18, 552.
Hazeltine, R. D. 1973 Recursive derivation of drift-kinetic equation. Plasma Phys. 15, 77.
Helander, P. & Sigmar, D. J. 2002 Collisional Transport in Magnetized Plasmas (ed. Haines, M. G. et al. ), Cambridge Monographs on Plasma Physics. Cambridge University Press.
Helander, P. & Nührenberg, J. 2009 Bootstrap current and neoclassical transport in quasi-isodynamic stellarators. Plasma Phys. Control. Fusion 51, 055004.
Helander, P., Newton, S. L., Mollén, A. & Smith, H. M. 2017 Impurity transport in a mixed-collisionality stellarator plasma. Phys. Rev. Lett. 118, 155002.
Ho, D. D. M. & Kulsrud, R. M. 1987 Neoclassical transport in stellarators. Phys. Fluids 30, 442.
Ida, K., Yoshinuma, M., Osakabe, M., Nagaoka, K., Yokoyama, M., Funaba, H., Suzuki, C., Ido, T., Shimizu, A., Murakami, I. et al. 2009 Observation of an impurity hole in a plasma with an ion internal transport barrier in the large helical device. Phys. Plasmas 16, 056111.
Klinger, T., Alonso, A., Bozhenkov, S., Burhenn, R., Dinklage, A., Fuchert, G., Geiger, J., Grulke, O., Langenberg, A., Hirsch, M. et al. 2017 Performance and properties of the first plasmas of Wendelstein 7-X. Plasma Phys. Control. Fusion 59, 014018.
Kornilov, V., Kleiber, R. & Hatzky, R. 2005 Gyrokinetic global electrostatic ion-temperature-gradient modes in finite equilibria of Wendelstein 7-X. Nucl. Fusion 45, 238.
Landreman, M. & Catto, P. J. 2012 Omnigenity as generalized quasisymmetry. Phys. Plasmas 19, 056103.
Landreman, M., Smith, H. M., Mollén, A. & Helander, P. 2014 Comparison of particle trajectories and collision operators for collisional transport in nonaxisymmetric plasmas. Phys. Plasmas 21, 042503.
Matsuoka, S., Satake, S., Kanno, R. & Sugama, H. 2015 Effects of magnetic drift tangential to magnetic surfaces on neoclassical transport in non-axisymmetric plasmas. Phys. Plasmas 22, 072511.
McCormick, K., Grigull, P., Burhenn, R., Brakel, R., Ehmler, H., Feng, Y., Gadelmeier, F., Giannone, L., Hildebrandt, D., Hirsch, M. et al. 2002 New advanced operational regime on the W7-AS stellarator. Phys. Rev. Lett. 89, 015001.
Mollén, A., Landreman, M., Smith, H. M., García-Regaña, J. M. & Nunami, M. 2018 Flux-surface variations of the electrostatic potential in stellarators: impact on the radial electric field and neoclassical impurity transport. Plasma Phys. Control. Fusion 60, 084001.
Mynick, H. E. 1984 Calculation of the poloidal ambipolar field in a stellarator and its effect on transport. Phys. Fluids 27, 2086.
Parra, F. I. & Calvo, I. 2011 Phase-space Lagrangian derivation of electrostatic gyrokinetics in general geometry. Plasma Phys. Control. Fusion 53, 045001.
Parra, F. I., Calvo, I., Helander, P. & Landreman, M. 2015 Less constrained omnigeneous stellarators. Nucl. Fusion 55, 033005.
Paul, E. J., Landreman, M., Poli, F. M., Spong, D. A., Smith, H. M. & Dorland, W. 2017 Rotation and neoclassical ripple transport in ITER. Nucl. Fusion 57, 116044.
Pedrosa, M. A., Alonso, J. A., García-Regaña, J. M., Hidalgo, C., Velasco, J. L., Calvo, I., Kleiber, R., Silva, C. & Helander, P. 2015 Electrostatic potential variations along flux surfaces in stellarators. Nucl. Fusion 55, 052001.
Shaing, K. C. 2015 Superbanana and superbanana plateau transport in finite aspect ratio tokamaks with broken symmetry. J. Plasma Phys. 81, 905810203.
Velasco, J. L., Calvo, I., Satake, S., Alonso, J. A., Nunami, M., Yokoyama, M., Sato, M., Estrada, T., Fontdecaba, J. M., Liniers, M. et al. 2017 Moderation of neoclassical impurity accumulation in high temperature plasmas of helical devices. Nucl. Fusion 57, 016016.
Velasco, J. L., Calvo, I., García-Regaña, J. M., Parra, F. I., Satake, S., Alonso, J. A. & the LHD team 2018 Large tangential electric fields in plasmas close to temperature screening. Plasma Phys. Control. Fusion 60, 074004.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Plasma Physics
  • ISSN: 0022-3778
  • EISSN: 1469-7807
  • URL: /core/journals/journal-of-plasma-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed