Skip to main content Accessibility help

GEMPIC: geometric electromagnetic particle-in-cell methods

  • Michael Kraus (a1) (a2), Katharina Kormann (a1) (a2), Philip J. Morrison (a3) and Eric Sonnendrücker (a1) (a2)


We present a novel framework for finite element particle-in-cell methods based on the discretization of the underlying Hamiltonian structure of the Vlasov–Maxwell system. We derive a semi-discrete Poisson bracket, which retains the defining properties of a bracket, anti-symmetry and the Jacobi identity, as well as conservation of its Casimir invariants, implying that the semi-discrete system is still a Hamiltonian system. In order to obtain a fully discrete Poisson integrator, the semi-discrete bracket is used in conjunction with Hamiltonian splitting methods for integration in time. Techniques from finite element exterior calculus ensure conservation of the divergence of the magnetic field and Gauss’ law as well as stability of the field solver. The resulting methods are gauge invariant, feature exact charge conservation and show excellent long-time energy and momentum behaviour. Due to the generality of our framework, these conservation properties are guaranteed independently of a particular choice of the finite element basis, as long as the corresponding finite element spaces satisfy certain compatibility conditions.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      GEMPIC: geometric electromagnetic particle-in-cell methods
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      GEMPIC: geometric electromagnetic particle-in-cell methods
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      GEMPIC: geometric electromagnetic particle-in-cell methods
      Available formats


Corresponding author

Email address for correspondence:


Hide All
Arnold, D. N., Falk, R. S. & Winther, R. 2006 Finite element exterior calculus, homological techniques, and applications. Acta Numerica 15, 1155.
Arnold, D. N., Falk, R. S. & Winther, R. 2010 Finite element exterior calculus: from hodge theory to numerical stability. Bull. Am. Math. Soc. 47, 281354.
Back, A. & Sonnendrücker, E. 2014 Finite element Hodge for spline discrete differential forms. Application to the Vlasov–Poisson system. Appl. Numer. Maths 79, 124136.
Baez, J. & Muniain, J. P. 1994 Gauge Fields, Knots and Gravity. World Scientific.
Barthelmé, R. & Parzani, C. 2005 Numerical charge conservation in particle-in-cell codes. In Numerical Methods for Hyperbolic and Kinetic Problems, pp. 728. European Mathematical Society.
Boffi, D. 2006 Compatible discretizations for eigenvalue problems. In Compatible Spatial Discretizations, pp. 121142. Springer.
Boffi, D. 2010 Finite element approximation of eigenvalue problems. Acta Numerica 19, 1120.
Boris, J. P. 1970 Relativistic plasma-simulation – optimization of a hybrid code. In Proceedings of the Fourth Conference on Numerical Simulation of Plasmas, pp. 367. Naval Research Laboratory.
Bossavit, A. 1990 Differential geometry for the student of numerical methods in electromagnetism. Lecture Notes. Available online on∼bossavit/Books/DGSNME/DGSNME.pdf.
Bossavit, A. 2006 Applied differential geometry. Lecture Notes. Available online on∼bossavit/BackupICM/Compendium.html.
Buffa, A. & Perugia, I. 2006 Discontinuous Galerkin approximation of the Maxwell eigenproblem. SIAM J. Numer. Anal. 44, 21982226.
Buffa, A., Rivas, J., Sangalli, G. & Vázquez, R. 2011 Isogeometric discrete differential forms in three dimensions. SIAM J. Numer. Anal. 49, 818844.
Buffa, A., Sangalli, G. & Vázquez, R. 2010 Isogeometric analysis in electromagnetics: B-splines approximation. Comput. Meth. Appl. Mech. Engng 199 (17), 11431152.
Burby, J. W. 2017 Finite-dimensional collisionless kinetic theory. Phys. Plasmas 24 (3), 032101.
Burby, J. W., Brizard, A. J., Morrison, P. J. & Qin, H. 2015 Hamiltonian Gyrokinetic Vlasov–Maxwell system. Phys. Lett. A 379 (36), 20732077.
Califano, F., Pegoraro, F. & Bulanov, S. V. 1997 Spatial structure and time evolution of the weibel instability in collisionless inhomogeneous plasmas. Phys. Rev. E 56, 963969.
Campos Pinto, M., Jund, S., Salmon, S. & Sonnendrücker, E. 2014 Charge conserving FEM-PIC schemes on general grids. C. R. Méc 342 (10–11), 570582.
Caorsi, S., Fernandes, P. & Raffetto, M. 2000 On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems. SIAM J. Numer. Anal. 38, 580607.
Cendra, H., Holm, D. D., Hoyle, M. J. W. & Marsden, J. E. 1998 The Maxwell–Vlasov Equations in Euler–Poincaré Form. J. Math. Phys. 39, 31383157.
Chandre, C., Guillebon, L., Back, A., Tassi, E. & Morrison, P. J. 2013 On the use of projectors for Hamiltonian systems and their relationship with Dirac brackets. J. Phys. A 46, 125203.
Channell, P. J. & Scovel, C. 1990 Symplectic integration of Hamiltonian systems. Nonlinearity 3 (2), 231259.
Cheng, C.-Z. & Knorr, G. 1976 The integration of the Vlasov equation in configuration space. J. Comput. Phys. 22, 330351.
Cheng, Y., Christlieb, A. J. & Zhong, X. 2014a Energy-conserving discontinuous Galerkin methods for the Vlasov–Ampère system. J. Comput. Phys. 256, 630655.
Cheng, Y., Christlieb, A. J. & Zhong, X. 2014b Energy-conserving discontinuous Galerkin methods for the Vlasov–Maxwell system. J. Comput. Phys. 279, 145173.
Cheng, Y., Gamba, I. M., Li, F. & Morrison, P. J. 2014c Discontinuous Galerkin methods for the Vlasov–Maxwell equations. SIAM J. Numer. Anal. 52 (2), 10171049.
Cheng, Y., Gamba, I. M. & Morrison, P. J. 2013 Study of conservation and recurrence of Runge–Kutta discontinuous Galerkin schemes for Vlasov–Poisson systems. J. Sci. Comput. 56, 319349.
Christiansen, S. H., Munthe-Kaas, H. Z. & Owren, B. 2011 Topics in structure-preserving discretization. Acta Numerica 20, 1119.
Crouseilles, N., Einkemmer, L. & Faou, E. 2015 Hamiltonian splitting for the Vlasov–Maxwell equations. J. Comput. Phys. 283, 224240.
Crouseilles, N., Navaro, P. & Sonnendrücker, E. 2014 Charge conserving grid based methods for the Vlasov–Maxwell equations. C. R. Méc 342 (10–11), 636646.
Darling, R. W. R. 1994 Differential Forms and Connections. Cambridge University Press.
de Dios, B. A., Carrillo, J. & Shu, C.-W. 2011 Discontinuous Galerkin methods for the one–dimensional Vlasov–Poisson system. Kinet. Relat. Models 4, 955989.
de Dios, B. A., Carrillo, J. A. & Shu, C.-W. 2012 Discontinuous Galerkin methods for the multi–dimensional vlasov–poisson problem. Math. Models Meth. Appl. Sci. 22, 1250042.
de Dios, B. A. & Hajian, S.High order and energy preserving discontinuous Galerkin methods for the Vlasov–Poisson system, Preprint, 2012, arXiv:1209.4025.
Desbrun, M., Kanso, E. & Tong, Y. 2008 Discrete differential geometry. In Discrete Differential Forms for Computational Modeling, pp. 287324. Birkhäuser, ISBN 978-3-7643-8621-4.
Dray, T. 2014 Differential Forms and the Geometry of General Relativity. CRC Press.
Eastwood, J. W. 1991 The virtual particle electromagnetic particle-mesh method. Comput. Phys. Commun. 640 (2), 252266.
Esirkepov, T. Z. 2001 Exact charge conservation scheme for particle-in-cell simulation with an arbitrary form-factor. Comput. Phys. Commun. 135 (2), 144153.
Evstatiev, E. G. & Shadwick, B. A. 2013 Variational formulation of particle algorithms for kinetic plasma simulations. J. Comput. Phys. 245, 376398.
Gerritsma, M. 2012 An Introduction to a compatible spectral discretization method. Mech. Adv. Mater. Struct. 19, 4867.
Hairer, E., Lubich, C. & Wanner, G. 2006 Geometric Numerical Integration. Springer.
He, Y., Qin, H., Sun, Y., Xiao, J., Zhang, R. & Liu, J. 2015 Hamiltonian integration methods for Vlasov–Maxwell equations. Phys. Plasmas 22, 124503.
He, Y., Sun, Y., Qin, H. & Liu, J. 2016 Hamiltonian particle-in-cell methods for Vlasov–Maxwell equations. Phys. Plasmas 23 (9), 092108.
Heath, R. E., Gamba, I. M., Morrison, P. J. & Michler, C. 2012 A discontinuous Galerkin method for the Vlasov–Poisson system. J. Comput. Phys. 231, 11401174.
Hesthaven, J. S. & Warburton, T. 2004 High-order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem. Phil. Trans. R. Soc. Lond. A 362 (1816), 493524.
Hirani, A. N.2003 Discrete exterior calculus. PhD thesis, California Institute of Technology,
Holloway, J. P. 1996 On numerical methods for Hamiltonian PDEs and a collocation method for the Vlasov–Maxwell equations. J. Comput. Phys. 129 (1), 121133.
Kraus, M.2013 Variational integrators in plasma physics. PhD thesis, Technische Universität München, arXiv:1307.5665.
Kraus, M., Maj, O. & Sonnendrücker, E.Variational integrators for the Vlasov–Poisson system. (in preparation).
Kreeft, J., Palha, A. & Gerritsma, M.Mimetic framework on curvilinear quadrilaterals of arbitrary order, Preprint, 2011, arXiv:1111:4304.
Langdon, A. B. 1992 On enforcing Gauss’ law in electromagnetic particle-in-cell codes. Comput. Phys. Commun. 70, 447450.
Lewis, H. R. 1970 Energy-conserving numerical approximations for Vlasov plasmas. J. Comput. Phys. 6 (1), 136141.
Lewis, H. R. 1972 Variational algorithms for numerical simulation of collisionless plasma with point particles including electromagnetic interactions. J. Comput. Phys. 10 (3), 400419.
Low, F. E. 1958 A Lagrangian formulation of the Boltzmann-Vlasov equation for plasmas. Proc. R. Soc. Lond. A 248, 282287.
Madaule, É., Restelli, M. & Sonnendrücker, E. 2014 Energy conserving discontinuous Galerkin spectral element method for the Vlasov–Poisson system. J. Comput. Phys. 279, 261288.
Marder, B. 1987 A method for incorporating Gauss’s law into electromagnetic PIC codes. J. Comput. Phys. 68, 4855.
Marsden, J. E. & Weinstein, A. 1982 The Hamiltonian structure of the Maxwell–Vlasov equations. Physica D 4 (3), 394406.
McLachlan, R. I. 1995 On the numerical integration of ordinary differential equations by symmetric composition methods. SIAM J. Sci. Comput. 16 (1), 151168.
McLachlan, R. I. & Quispel, G. R. W. 2002 Splitting methods. Acta Numerica 11, 341434.
Monk, P. 2003 Finite Element Methods for Maxwell’s Equations. Oxford University Press.
Moon, H., Teixeira, F. L. & Omelchenko, Y. A. 2015 Exact charge-conserving scatter-gather algorithm for particle-in-cell simulations on unstructured grids: a geometric perspective. Comput. Phys. Commun. 194, 4353.
Moore, B. E. & Reich, S. 2003 Multi-symplectic integration methods for Hamiltonian PDEs. Future Generation Comput. Syst. 19 (3), 395402.
Morita, S. 2001 Geometry of Differential Forms. American Mathematical Society.
Morrison, P. J. 1980 The Maxwell–Vlasov equations as a continuous Hamiltonian system. Phys. Lett. A 80 (5–6), 383386.
Morrison, P. J.1981a Hamiltonian field description of the one-dimensional Poisson–Vlasov equations. Tech. Rep. PPPL–1788, Princeton Plasma Physics Laboratory.
Morrison, P. J.1981b Hamiltonian field description of the two-dimensional vortex fluids and guiding center plasmas. Tech. Rep. PPPL–1783, Princeton Plasma Physics Laboratory.
Morrison, P. J. 1982 Poisson brackets for fluids and plasmas. In AIP Conference Proceedings, vol. 88, pp. 1346. AIP.
Morrison, P. J. 1986 A paradigm for joined Hamiltonian and dissipative systems. Physica D 18, 410419.
Morrison, P. J. 1987 Variational principle and stability of nonmonotonic Vlasov–Poisson equilibria. Z. Naturforsch. A 42, 11151123.
Morrison, P. J. 1998 Hamiltonian description of the ideal fluid. Rev. Mod. Phys. 70, 467521.
Morrison, P. J. A general theory for gauge-free lifting. Phys. Plasmas 20 (1), 012104.
Morrison, P. J. & Pfirsch, D. 1989 Free-energy expressions for Vlasov equilibria. Phys. Rev. A 40, 38983910.
Munz, C.-D., Omnes, P., Schneider, R., Sonnendrücker, E. & Voss, U. 2000 Divergence correction techniques for Maxwell solvers based on a hyperbolic model. J. Comput. Phys. 161, 484511.
Munz, C.-D., Schneider, R., Sonnendrücker, E. & Voß, U. 1999 Maxwell’s equations when the charge conservation is not satisfied. C. R. Acad. Sci. I 328 (5), 431436.
Nakamura, T. & Yabe, T. 1999 Cubic interpolated propagation scheme for solving the hyper–dimensional Vlasov–Poisson equation in phase space. J. Comput. Phys. 120, 122154.
Palha, A., Rebelo, P. P., Hiemstra, R., Kreeft, J. & Gerritsma, M. 2014 Physics-compatible discretization techniques on single and dual grids, with application to the Poisson equation of volume forms. J. Comput. Phys. 257, 13941422.
Qin, H., He, Y., Zhang, R., Liu, J., Xiao, J. & Wang, Y. 2015 Comment on Hamiltonian splitting for the Vlasov–Maxwell equations. J. Comput. Phys. 297, 721723.
Qin, H., Liu, J., Xiao, J., Zhang, R., He, Y., Wang, Y., Sun, Y., Burby, J. W., Ellison, L. & Zhou, Y. 2016 Canonical symplectic particle-in-cell method for long-term large-scale simulations of the Vlasov–Maxwell equations. Nucl. Fusion 56 (1), 014001.
Ratnani, A. & Sonnendrücker, E. 2012 An arbitrary high-order spline finite element solver for the time domain Maxwell equations. J. Sci. Comput. 51 (1), 87106.
Reich, S. 2000 Multi-symplectic Runge–Kutta collocation methods for Hamiltonian wave equations. J. Comput. Phys. 157 (2), 473499.
Sanz-Serna, J. M. & Calvo, M.-P. 1993 Symplectic numerical methods for Hamiltonian problems. Intl J. Mod. Phys. C 04 (02), 385392.
Scovel, C. & Weinstein, A. 1994 Finite dimensional Lie-Poisson approximations to Vlasov–Poisson equations. Commun. Pure Appl. Maths 47 (5), 683709.
Shadwick, B. A., Stamm, A. B. & Evstatiev, E. G. 2014 Variational formulation of macro-particle plasma simulation algorithms. Phys. Plasmas 21 (5), 055708.
Sircombe, N. J. & Arber, T. D. 2009 VALIS: A split-conservative scheme for the relativistic 2D Vlasov–Maxwell system. J. Comput. Phys. 228, 47734788.
Sonnendrücker, E. 2017 Numerical Methods for the Vlasov–Maxwell Equations. Springer.
Squire, J., Qin, H. & Tang, W. M. 2012 Geometric integration of the Vlasov–Maxwell system with a variational particle-in-cell scheme. Phys. Plasmas 19, 084501.
Stamm, A. B. & Shadwick, B. A. 2014 Variational formulation of macroparticle models for electromagnetic plasma simulations. IEEE Trans. Plasma Sci. 42 (6), 17471758.
Stern, A., Tong, Y., Desbrun, M. & Marsden, J. E. 2014 Geometric computational electrodynamics with variational integrators and discrete differential forms. In Geometry, Mechanics and Dynamics: The Legacy of Jerry Marsden, Fields Institute Communications. Springer.
Strang, G. 1968 On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5 (3), 506517.
Suzuki, M. 1990 Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Phys. Lett. A 146 (6), 319323.
Trotter, H. F. 1959 On the product of semi-groups of operators. Proc. Am. Math. Soc. 10 (4), 545551.
Umeda, T., Omura, Y., Tominaga, T. & Matsumoto, H. 2003 A new charge conservation method in electromagnetic particle-in-cell simulations. Comput. Phys. Commun. 156 (1), 7385.
Villasenor, J. & Buneman, O. 1992 Rigorous charge conservation for local electromagnetic field solvers. Comput. Phys. Commun. 69 (2), 306316.
Warnick, K. F. & Russer, P. H. 2006 Two, three and four-dimensional electromagnetics using differential forms. Turkish J. Elect. Engng Comput. Sci. 14 (1), 153172.
Warnick, K. F., Selfridge, R. H. & Arnold, D. V. 1998 Teaching electromagnetic field theory using differential forms. IEEE Trans. Edu. 1, 5368.
Weibel, E. S. 1959 Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution. Phys. Rev. Lett. 2, 8384.
Weinstein, A. & Morrison, P. J. 1981 Comments on: the Maxwell–Vlasov equations as a continuous Hamiltonian system. Phys. Lett. A 86 (4), 235236.
Xiao, J., Qin, H., Liu, J., He, Y., Zhang, R. & Sun, Y. 2015 Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov–Maxwell systems. Phys. Plasmas 22, 112504.
Ye, H. & Morrison, P. J. 1992 Action principles for the Vlasov equation. Phys. Fluids B 4 (4), 771777.
Yee, K. S. 1966 Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302307.
Yoshida, H. 1990 Construction of higher order symplectic integrators. Phys. Lett A 150 (5–7), 262268.
Yu, J., Jin, X., Zhou, W., Li, B. & Gu, Y. 2013 High-order interpolation algorithms for charge conservation in particle-in-cell simulations. Commun. Comput. Phys. 13, 11341150.
MathJax is a JavaScript display engine for mathematics. For more information see


Related content

Powered by UNSILO

GEMPIC: geometric electromagnetic particle-in-cell methods

  • Michael Kraus (a1) (a2), Katharina Kormann (a1) (a2), Philip J. Morrison (a3) and Eric Sonnendrücker (a1) (a2)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.