Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T07:06:29.679Z Has data issue: false hasContentIssue false

High-frequency plasma fluctuations in the middle magnetosheath and near its boundaries: Spektr-R observations

Published online by Cambridge University Press:  27 March 2017

Liudmila S. Rakhmanova*
Affiliation:
Space Research Institute, Russian Academy of Sciences, Moscow 117997, Russia
M. O. Riazantseva
Affiliation:
Space Research Institute, Russian Academy of Sciences, Moscow 117997, Russia
G. N. Zastenker
Affiliation:
Space Research Institute, Russian Academy of Sciences, Moscow 117997, Russia
Yu. I. Yermolaev
Affiliation:
Space Research Institute, Russian Academy of Sciences, Moscow 117997, Russia
*
Email address for correspondence: rakhlud@gmail.com

Abstract

We present a case study of the flank magnetosheath crossing by the Spektr-R satellite. High time resolution measurements of the ion flux value and its direction provided by the BMSW (Fast Solar Wind Monitor) instrument are examined at different distances from the magnetosheath boundaries – the bow shock and the magnetopause. The magnetosheath behind the quasi-perpendicular bow shock is analysed. The time resolution of these data – 31 ms – is sufficient for observing the frequency spectra of plasma fluctuations both at the magnetohydrodynamics (MHD) and ion kinetic scales. Generally, MHD scales are characterised by Kolmogorov-like spectra ${\sim}f^{-5/3}$ while spectra at kinetic scales are steeper with a break existing between the two scales. We examine evolution of spectral parameters such as power density and slopes, and the break frequency together with the evolution of properties of the probability distribution function. We find out that (i) power spectral densities of the two quantities change differently toward the magnetosheath (MSH) boundaries, (ii) the spectra slopes do not change significantly across the magnetosheath, (iii) the break frequency of the spectrum changes toward the magnetopause. In the middle MSH the spectra are affected by instabilities supposed to be ion cyclotron instabilities. We demonstrate that the plasma is low intermittent in the middle MSH and highly intermittent near its boundaries in the absence of large-scale variations.

Type
Research Article
Copyright
© Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandrova, O. 2008 Solar wind versus magnetosheath turbulence and Alfven vortices. Nonlinear Process. Geophys. 15, 95108.Google Scholar
Alexandrova, O., Carbone, V., Veltri, P. & Sorriso-Valvo, L. 2007 Solar wind cluster observations: turbulent spectrum and role of Hall effect. Planet. Space Sci. 55, 22242227.CrossRefGoogle Scholar
Alexandrova, O., Carbone, V., Veltri, P. & Sorriso-Valvo, L. 2008 Small-scale energy cascade of the solar wind turbulence. Astrophys. J. 674, 11531157.Google Scholar
Alexandrova, O., Chen, C. H. K., Sorriso-Valvo, L., Horbury, T. S. & Bale, S. D. 2013 Solar wind turbulence and the role of ion instabilities. Space Sci. Rev. 178, 101139.CrossRefGoogle Scholar
Alexandrova, O., Lacombe, C. & Mangeney, A. 2008 Spectra and anisotropy of magnetic fluctuations in the Earth’s magnetosheath: cluster observations. Ann. Geophys. 26, 35853596.Google Scholar
Alexandrova, O., Mangeney, A., Maksimovic, M., Cornilleau-Wehrlin, N., Bosqued, J.-M. & André, M. 2006 Alfvén vortex filaments observed in magnetosheath downstream of a quasiperpendicular bow shock. J. Geophys. Res. 111, A12208.Google Scholar
Anderson, J., Fuselier, S., Gary, S. & Denton, R. 1994 Magnetic spectral signatures in the Earth’s magnetosheath and plasma depletion layer. J. Geophys. Res. 99, 58775891.CrossRefGoogle Scholar
Bale, S. D., Kellogg, P. J., Mozer, F. S., Horbury, T. S. & Reme, H. 2005 Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence. Phys. Rev. Lett. 94, 215002.Google Scholar
Boldyrev, S. & Perez, J. C. 2012 Spectrum of kinetic-Alfvén turbulence. Astrophys. J. 758, L44.Google Scholar
Breuillard, H., Yordanova, Y., Vaivads, A. & Alexandrova, O. 2016 The effects of kinetic instabilities on small-scale turbulence in Earth’s magnetosheath. Astrophys. J. 829, 54.CrossRefGoogle Scholar
Bruno, R. & Carbone, V. 2013 The solar wind as a turbulence laboratory. Living Rev. Sol. Phys. 10, 2.Google Scholar
Bruno, R., Carbone, V., Sorriso-Valvo, L. & Bavassano, B. 2003 Radial evolution of solar wind intermittency in the inner heliosphere. J. Geophys. Res. 108 (A3), 1130.Google Scholar
Budaev, V. P., Zelenyi, L. M. & Savin, S. P. 2015 Generalized self-similarity of intermittent plasma turbulence in space and laboratory plasmas. J. Plasma Phys. 81, 395810602.Google Scholar
Burlaga, L. F. 1991 Intermittent turbulence in the solar wind. J. Geophys. Res. 96, 58475851.Google Scholar
Celnikier, L. M., Harvey, C. C., Jegou, R., Moricet, P. & Kemp, M. 1983 A determination of the electron density fluctuation spectrum in the solar wind, using the ISEE propagation experiment. Astron. Astrophys. 126, 293298.Google Scholar
Celnikier, L. M., Muschietti, L. & Goldman, M. V. 1987 Aspects of interplanetary plasma turbulence. Astron. Astrophys. 181, 138154.Google Scholar
Chen, C. H. K. 2016 Recent progress in astrophysical plasma turbulence from solar wind observations. J. Plasma Phys. 82, 535820602.Google Scholar
Chen, C. H. K., Howes, G. G., Bonnell, J. W., Mozer, F. S., Klein, K. G. & Bale, S. D. 2013 Kinetic scale density fluctuations in the solar wind. AIP Conf. Proc. 1539, 143.Google Scholar
Chen, C. H. K., Leung, L., Boldyrev, S., Maruca, B. A. & Bale, S. D. 2014a Ion-scale spectral break of solar wind turbulence at high and low beta. Geophys. Res. Lett. 41, 8081.Google Scholar
Chen, C. H. K., Mallet, A., Schekochihin, A. A., Horbury, T. S., Wicks, R. T. & Bale, S. D. 2012a Three-dimensional structure of solar wind turbulence. Astrophys. J. 758, 120.Google Scholar
Chen, C. H. K., Salem, C. S., Bonnell, J. W., Mozer, F. S. & Bale, S. D. 2012b Density fluctuation spectrum of solar wind turbulence between ion and electron scales. Phys. Rev. Lett. 109, 035001.Google ScholarPubMed
Chen, C. H. K., Sorriso-Valvo, L., Šafránková, J. & Němeček, Z. 2014b Intermittency of solar wind density fluctuations from ion to electron scales. Astrophys. J. Lett. 789, L8.CrossRefGoogle Scholar
Czaykowska, A., Bauer, T. M., Treumann, R. A. & Baumjohann, W. 2001 Magnetic field fluctuations across the Earth’s bow shock. Ann. Geophys. 19, 275287.Google Scholar
Dmitruk, P., Matthaeus, W. H. & Seenu, N. 2004 Test particle energization by current sheets and nonuniform fields in magnetohydrodynamic turbulence. Astrophys. J. 617, 667679.Google Scholar
Frisch, U. 1995 Turbulence. Cambridge University Press.Google Scholar
Gagua, I. T, Gagua, T. I. & Zastenker, G. N. 2009 Determination of a solar wind ion flux value and direction using a set of integral Faraday cups for the fast monitor of solar wind. WDS’09 Proceedings of Contributed Papers: Part II: Physics of Plasmas and Ionized Media. (ed. Safrankova, J. & Pavlu, J.), pp. 2229. Matfyzpress.Google Scholar
Galtier, S. 2006 Wave turbulence in incompressible Hall magnetohydrodynamics. J. Plasma Phys. 72, 721769.CrossRefGoogle Scholar
Goldreich, P. & Sridhar, S. 1995 Toward a theory of interstellar turbulence. II. Strong Alfvénic turbulence. Astrophys. J. 438, 763775.Google Scholar
Goldreich, P. & Sridhar, S. 1997 Magnetohydrodynamic turbulence revisited. Astrophys. J. 485, 680688.Google Scholar
Goldstein, M. L., Roberts, D. A. & Fitch, C. A. 1994 Properties of the fluctuating magnetic helicity in the inertial and dissipation ranges of solar wind turbulence. J. Geophys. Res. 99, 1151911538.CrossRefGoogle Scholar
Groth, C. P. T., De Zeeuw, D. L., Gombosi, T. I. & Powell, K. G. 2000 Global three-dimensional MHD simulation of a space weather event: CME formation, interplanetary propagation, and interaction with the magnetosphere. J. Geophys. Res. 105, 2505325078.Google Scholar
Howes, G. G., Bale, S. D., Klein, K. G., Chen, C. H. K., Salem, C. S. & Tenbarge, J. M. 2012 The slow-mode nature of compressible wave power in solar wind turbulence. Astrophys. J. Lett. 753, L19.CrossRefGoogle Scholar
Howes, G. G., Cowley, S. C., Dorland, W., Hammett, G. W., Quataert, E. & Schekochihin, A. A. 2008 A model of turbulence in magnetized plasmas: implications for the dissipation range in the solar wind. J. Geophys. Res. 113, A05103.Google Scholar
Howes, G. G., Tenbarge, J. M., Dorland, W., Quataert, E., Schekochihin, A. A., Numata, R. & Tatsuno, T. 2011 Gyrokinetic simulations of solar wind turbulence from ion to electron scales. Phys. Rev. Lett. 107, 035004.Google Scholar
Huang, S. Y., Sahraoui, F., Deng, X. H., He, J. S., Yuan, Z. G., Zhou, M., Pang, Y. & Fu, H. S. 2014 Kinetic turbulence in the terrestrial magnetosheath: cluster observations. Astrophys. J. Lett. 789, L28.Google Scholar
Kellogg, P. J. & Horbury, T. S. 2005 Rapid density fluctuations in the solar wind. Ann. Geophys. 23, 37653773.CrossRefGoogle Scholar
Kiyani, K. H., Chapman, S. C., Khotyaintsev, Yu. V., Dunlop, M. W. & Sahraoui, F. 2009 Global scale-invariant dissipation in collisionless plasma turbulence. Phys. Rev. Lett. 103 (7), 075006.Google Scholar
Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Dokl. Akad. Nauk SSSR. 30, 301305.Google Scholar
Kozak, L. V., Pilipenko, V. A., Chugunova, O. M. & Kozak, P. N. 2011 Statistical analysis of turbulence in the foreshock region and in the Earth’s magnetosheath. Cosmic Res. 49 (3), 194204.CrossRefGoogle Scholar
Lacombe, C. & Belmont, G. 1995 Waves in the Earth’s magnetosheath: observations and interpretations. Adv. Space Res. 15, 329340.Google Scholar
Lacombe, C., Belmont, G., Hubert, D., Harvey, C. C., Mangeney, A., Russell, C. T., Gosling, J. T. & Fuselier, S. A. 1995 Density and magnetic field fluctuations observed by ISEE l-2 in the quiet magnetosheath. Ann. Geophys. 13, 343357.CrossRefGoogle Scholar
Leamon, R. J., Matthaeus, W. H., Smith, C. W., Zank, G. P., Mullan, D. J. & Oughton, S. 2000 MHD-driven kinetic dissipation in the solar wind and corona. Astrophys. J. 537, 10541062.CrossRefGoogle Scholar
Leamon, R. J., Smith, C. W., Ness, N. F., Matthaeus, W. H. & Wong, H. K. 1998 Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. J. Geophys. Res. 103, 47754787.CrossRefGoogle Scholar
Lion, S., Alexandrova, O. & Zaslavsky, A. 2016 Coherent events and spectral shape at ion kinetic scales in the fast solar wind turbulence. Astrophys. J. 824, 47.Google Scholar
Mangeney, A., Lacombe, C., Maksimovic, M., Samsonov, A. A., Cornilleau-Wehrlin, N., Harvey, C. C., Bosqued, J.-M. & Trávniček, P. 2006 Cluster observations in the magnetosheath. Part 1. Anisotropies of the wave vector distribution of the turbulence at electron scales. Ann. Geophys. 24, 35073521.Google Scholar
Markovskii, S. A., Vasquez, B. J. & Smith, C. W. 2008 Statistical analysis of the high-frequency spectral break of the solar wind turbulence at 1 AU. Astrophys. J. 675, 15761583.Google Scholar
Marsch, E. & Tu, C. Y. 1997 Intermittency, non-Gaussian statistics and fractal scaling of MHD fluctuations in the solar wind. Process. Geophys. 4 (2), 101124.Google Scholar
Perri, S., Carbone, V. & Veltri, P. 2010 Where does fluid-like turbulence break down in the solar wind? Astrophys. J. 725, 5255.CrossRefGoogle Scholar
Pitňa, A., Šafránková, J., Němeček, Z., Goncharov, O., Němec, F., Přech, L., Chen, C. H. K. & Zastenker, G. N. 2016 Density fluctuations upstream and downstream of interplanetary shocks. Astrophys. J. 819, 41.Google Scholar
Rakhmanova, L., Riazantseva, M. & Zastenker, G. 2016 Plasma fluctuations at the flanks of the Earth’s magnetosheath at ion kinetic scales. Ann. Geophys. 34, 10111018.Google Scholar
Rezeau, L., Belmont, G., Cornilleau-Wehrlin, N. & Reberac, F. 1999 Spectral law and polarization properties of the low frequency waves at the magnetopause. Geophys. Res. Lett. 26, 651654.Google Scholar
Riazantseva, M. O., Budaev, V. P., Rakhmanova, L. S., Zastenker, G. N., Šafránková, J., Němeček, Z. & Přech, L. 2016 Comparison of properties of small scale ion flux fluctuations in flank magnetosheath and in solar wind. Adv. Space Res. 58 (2), 166174.Google Scholar
Riazantseva, M. O., Budaev, V. P., Zelenyi, L. M., Zastenker, G. N., Pavlos, G. P., Šafránková, J., Němeček, Z., Přech, L. & Němec, F. 2015 Dynamic properties of small scale solar wind plasma fluctuations. Phil. Trans. R. Soc. Lond. A 373, 20140146.Google Scholar
Šafránková, J., Němeček, Z., Přech, L., Zastenker, G. N., Cěrmák, I., Chesalin, L., Komárek, A., Vaverka, J., Beránek, M., Pavlu, J. et al. 2013b Fast solar wind monitor (BMSW): description and first results. Space Sci. Rev. 175, 165182.Google Scholar
Šafránková, J., Němeček, Z., Němec, F., Přech, L., Chen, C. H. K. & Zastenker, G. N. 2016 Power spectral density of fluctuations of bulk and thermal speeds in the solar wind. Astrophys. J. 825, 121.Google Scholar
Šafránková, J., Němeček, Z., Němec, F., Přech, L., Pitňa, A., Chen, C. H. K. & Zastenker, G. N. 2015 Solar wind density spectra around the ion spectral break. Astrophys. J. 803, 107.Google Scholar
Šafránková, J., Němeček, Z., Přech, L. & Zastenker, G. N. 2013a Ion kinetic scale in the solar wind observed. Phys. Rev. Lett. 110, 025004.Google Scholar
Sahraoui, F., Belmont, G., Rezeau, L. & Cornilleau-Wehrlin, N. 2006 Anisotropic turbulent spectra in the terrestrial magnetosheath as seen by the Cluster spacecraft. Phys. Rev. Lett. 96, 075002.Google Scholar
Schekochihin, A. A., Cowley, S. C., Dorland, W., Hammett, G. W., Howes, G. G., Quataert, E. & Tatsuno, T. 2009 Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. Suppl. 182, 310377.CrossRefGoogle Scholar
Schwartz, S. J., Burgess, D. & Moses, J. J. 1996 Low-frequency waves in the Earth’s magnetosheath: present status. Ann. Geophys. 14, 11341150.Google Scholar
Servidio, S., Valentini, F., Perrone, D., Greco, A., Califano, F., Matthaeus, W. H. & Veltri, P. 2015 A kinetic model of plasma turbulence. J. Plasma Phys. 81, 325810107.Google Scholar
Shaikh, D. & Zank, G. P. 2010 Turbulent spectra in the solar wind plasma. J. Plasma Phys. 76 (2), 183191.Google Scholar
Shevyrev, N. N., Zastenker, G. N., Eiges, P. E. & Richardson, J. D. 2006 Low frequency waves observed by Interball-1 in foreshock and magnetosheath. Adv. Space Res. 37, 15161521.Google Scholar
Shevyrev, N., Zastenker, G. N., Nozdrachev, M. N., Němeček, Z., Šafránková, J. & Richardson, J. D. 2003 High and low frequency large amplitude variations of plasma and magnetic field in the magnetosheath: radial profile and some features. Adv. Space Res. 31, 13891394.Google Scholar
Sorriso-Valvo, L., Carbone, V., Veltri, P., Consolini, G. & Bruno, R. 1999 Intermittency in the solar wind turbulence through probability distribution functions of fluctuations. Geophys. Res. Lett. 26, 18011804.Google Scholar
Tu, C.-Y. & Marsch, E. 1995 MHD structures, waves and turbulence in the solar wind: observations and theories. Space Sci. Rev. 73 (1), 1210.Google Scholar
Unti, T. W. J., Neugebauer, M. & Goldstein, B. E. 1973 Direct measurements of solar–wind fluctuations between 0.0048 and 13.3 Hz. Astrophys. J. 180, 591598.Google Scholar
Vaivads, A. et al. 2016 Turbulence Heating ObserveR – satellite mission proposal. J. Plasma Phys. 82, 905820501.Google Scholar
Veltri, P. 1999 MHD turbulence in the solar wind: self-similarity, intermittency and coherent structures. Plasma Phys. Control. Fusion 41, 787795.Google Scholar
Yordanova, E., Perri, S., Sorriso-Valvo, L. & Carbone, V. 2015 Multipoint observation of anisotropy and intermittency in solar–wind turbulence. Eur. Phys. Lett. 110, 19001.Google Scholar
Yordanova, E., Vaivads, A., André, M., Buchert, S. C. & Vörös, Z. 2008 Magnetosheath plasma turbulence and its spatiotemporal evolution as observed by the Cluster spacecraft. Phys. Rev. Lett. 100, 205003.CrossRefGoogle ScholarPubMed
Zastenker, G. N., Khrapchenkov, V. V., Koloskova, I. V., Gavrilova, E. A., Ryazanova, E. E., Ryazantseva, M. O., Gagua, T. I., Gagua, I. T., Šafránková, J., Němeček, Z. et al. 2013 Fast measurements of solar wind parameters by BMSW instrument. Cosmic Res. 51 (2), 7889.Google Scholar