Skip to main content Accessibility help
×
×
Home

Imposed magnetic field and hot electron propagation in inertial fusion hohlraums

  • David J. Strozzi (a1), L. J. Perkins (a1), M. M. Marinak (a1), D. J. Larson (a1), J. M. Koning (a1) and B. G. Logan (a1)...
Abstract

The effects of an imposed, axial magnetic field $B_{z0}$ on hydrodynamics and energetic electrons in inertial confinement fusion indirect-drive hohlraums are studied. We present simulations from the radiation-hydrodynamics code HYDRA of a low-adiabat ignition design for the National Ignition Facility, with and without $B_{z0}=70~\text{T}$ . The field’s main hydrodynamic effect is to significantly reduce electron thermal conduction perpendicular to the field. This results in hotter and less dense plasma on the equator between the capsule and hohlraum wall. The inner laser beams experience less inverse bremsstrahlung absorption before reaching the wall. The X-ray drive is thus stronger from the equator with the imposed field. We study superthermal, or ‘hot’, electron dynamics with the particle-in-cell code ZUMA, using plasma conditions from HYDRA. During the early-time laser picket, hot electrons based on two-plasmon decay in the laser entrance hole (Regan et al., Phys. Plasmas, vol. 17(2), 2010, 020703) are guided to the capsule by a 70 T field. Twelve times more energy deposits in the deuterium–tritium fuel. For plasma conditions early in peak laser power, we present mono-energetic test-case studies with ZUMA  as well as sources based on inner-beam stimulated Raman scattering. The effect of the field on deuterium–tritium deposition depends strongly on the source location, namely whether hot electrons are generated on field lines that connect to the capsule.

Copyright
Corresponding author
Email address for correspondence: strozzi2@llnl.gov
References
Hide All
Chang, P. Y., Fiksel, G., Hohenberger, M., Knauer, J. P., Betti, R., Marshall, F. J., Meyerhofer, D. D., Séguin, F. H. & Petrasso, R. D. 2011 Fusion yield enhancement in magnetized laser-driven implosions. Phys. Rev. Lett. 107 (3), 035006.
Clark, D. S., Marinak, M. M., Weber, C. R., Eder, D. C., Haan, S. W., Hammel, B. A., Hinkel, D. E., Jones, O. S., Milovich, J. L., Patel, P. K. et al. 2015 Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign. Phys. Plasmas 22 (2), 022703.
Dewald, E. et al. 2015 Phys. Rev. Lett. (submitted).
Dewald, E. L., Thomas, C., Hunter, S., Divol, L., Meezan, N., Glenzer, S. H., Suter, L. J., Bond, E., Kline, J. L., Celeste, J. et al. 2010 Hot electron measurements in ignition relevant hohlraums on the National Ignition Facility. Rev. Sci. Instrum. 81 (10), 10D938.
Döppner, T., Thomas, C. A., Divol, L., Dewald, E. L., Celliers, P. M., Bradley, D. K., Callahan, D. A., Dixit, S. N., Harte, J. A., Glenn, S. M. et al. 2012 Direct measurement of energetic electrons coupling to an imploding low-adiabat inertial confinement fusion capsule. Phys. Rev. Lett. 108, 135006.
Epperlein, E. M. & Haines, M. G. 1986 Plasma transport coefficients in a magnetic field by direct numerical solution of the Fokker–Planck equation. Phys. Fluids 29 (4), 10291041.
Fujioka, S., Zhang, Z., Ishihara, K., Shigemori, K., Hironaka, Y., Johzaki, T., Sunahara, A., Yamamoto, N., Nakashima, H., Watanabe, T. et al. 2013 Kilotesla magnetic field due to a capacitor-coil target driven by high power laser. Sci. Rep. 3, 1170.
Grandy, J. 1999 Conservative remapping and region overlays by intersecting arbitrary polyhedra. J. Comput. Phys. 148 (2), 433466.
Haan, S. W., Lindl, J. D., Callahan, D. A., Clark, D. S., Salmonson, J. D., Hammel, B. A., Atherton, L. J., Cook, R. C., Edwards, M. J., Glenzer, S. et al. 2011 Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility. Phys. Plasmas 18 (5), 051001.
Hohenberger, M., Albert, F., Palmer, N. E., Lee, J. J., Döppner, T., Divol, L., Dewald, E. L., Bachmann, B., MacPhee, A. G., LaCaille, G. et al. 2014 Time-resolved measurements of the hot-electron population in ignition-scale experiments on the National Ignition Facility. Rev. Sci. Instrum. 85 (11), 11D501.
Hohenberger, M., Chang, P.-Y., Fiksel, G., Knauer, J. P., Betti, R., Marshall, F. J., Meyerhofer, D. D., Séguin, F. H. & Petrasso, R. D. 2012 Inertial confinement fusion implosions with imposed magnetic field compression using the omega laser. Phys. Plasmas 19 (5), 056306.
Jones, O. S., Cerjan, C. J., Marinak, M. M., Milovich, J. L., Robey, H. F., Springer, P. T., Benedetti, L. R., Bleuel, D. L., Bond, E. J., Bradley, D. K. et al. 2012 A high-resolution integrated model of the national ignition campaign cryogenic layered experiments. Phys. Plasmas 19 (5), 056315.
Jones, R. D. & Mead, W. C. 1986 The physics of burn in magnetized deuterium–tritium plasmas. Nucl. Fusion 26 (2), 127137.
Koning, J., Kerbel, G. & Marinak, M. 2006 Resistive MHD in HYDRA using vector finite elements on 3D ALE structured hexagonal meshes. Bull. Am. Phys. Soc. 51 (7).
Larson, D., Tabak, M. & Ma, T. 2010 Hybrid simulations for magnetized fast ignition targets and analyzing cone-wire experiments. Bull. Am. Phys. Soc. 55 (15).
Lee, Y. T. & More, R. M. 1984 An electron conductivity model for dense plasmas. Phys. Fluids 27 (5), 12731286.
Marinak, M. M., Kerbel, G. D., Gentile, N. A., Jones, O., Munro, D., Pollaine, S., Dittrich, T. R. & Haan, S. W. 2001 Three-dimensional HYDRA simulations of National Ignition Facility targets. Phys. Plasmas 8 (5), 22752280.
Michel, P., Divol, L., Dewald, E. L., Milovich, J. L., Hohenberger, M., Jones, O. S., Hopkins, L. B., Berger, R. L., Kruer, W. L. & Moody, J. D. 2015 Multibeam stimulated raman scattering in inertial confinement fusion conditions. Phys. Rev. Lett. 115, 055003.
Michel, P., Divol, L., Williams, E. A., Weber, S., Thomas, C. A., Callahan, D. A., Haan, S. W., Salmonson, J. D., Dixit, S., Hinkel, D. E. et al. 2009 Tuning the implosion symmetry of ICF targets via controlled crossed-beam energy transfer. Phys. Rev. Lett. 102 (2), 025004.
Montgomery, D. S., Albright, B. J., Barnak, D. H., Chang, P. Y., Davies, J. R., Fiksel, G., Froula, D. H., Kline, J. L., MacDonald, M. J., Sefkow, A. B. et al. 2015 Use of external magnetic fields in hohlraum plasmas to improve laser-coupling. Phys. Plasmas 22 (1), 010703.
Moody, J. D., Callahan, D. A., Hinkel, D. E., Amendt, P. A., Baker, K. L., Bradley, D., Celliers, P. M., Dewald, E. L., Divol, L., Döppner, T. et al. 2014 Progress in hohlraum physics for the National Ignition Facility. Phys. Plasmas 21 (5), 056317.
Perkins, L. J., Logan, B. G., Zimmerman, G. B. & Werner, C. J. 2013 Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields. Phys. Plasmas 20 (7), 072708.
Perkins, L. J., Strozzi, D. J., Rhodes, M. A., Logan, B. G., Ho, D. D. & Hawkins, S. A. 2014 The application of imposed magnetic fields to ignition and thermonuclear burn on the National Ignition Facility. Bull. Am. Phys. Soc. 59 (15).
Pollock, B., Turnbull, D., Ross, S., Hazi, A., Ralph, J., LePape, S., Froula, D., Heberberger, D. & Moody, J. 2014 Laser-generated magnetic fields in quasi-hohlraum geometries. Bull. Am. Phys. Soc. 59 (15).
Regan, S. P., Meezan, N. B., Suter, L. J., Strozzi, D. J., Kruer, W. L., Meeker, D., Glenzer, S. H., Seka, W., Stoeckl, C., Glebov, V. Yu. et al. 2010 Suprathermal electrons generated by the two-plasmon-decay instability in gas-filled hohlraums. Phys. Plasmas 17 (2), 020703.
Rhodes, M. A., Perkins, L. J. & Logan, B. G.2015 MAGNIFICO: a system for high-field magnetized inertial fusion at the National Ignition Facility. IEEE Trans. Plasma Sci. (submitted).
Robey, H. F., Celliers, P. M., Moody, J. D., Sater, J., Parham, T., Kozioziemski, B., Dylla-Spears, R., Ross, J. S., LePape, S., Ralph, J. E. et al. 2014 Shock timing measurements and analysis in deuterium–tritium-ice layered capsule implosions on NIF. Phys. Plasmas 21 (2), 022703.
Robinson, A. P. L., Strozzi, D. J., Davies, J. R., Gremillet, L., Honrubia, J. J., Johzaki, T., Kingham, R. J., Sherlock, M. & Solodov, A. A. 2014 Theory of fast electron transport for fast ignition. Nucl. Fusion 54 (5), 054003.
Rosen, M. D., Scott, H. A., Hinkel, D. E., Williams, E. A., Callahan, D. A., Town, R. P. J., Divol, L., Michel, P. A., Kruer, W. L., Suter, L. J. et al. 2011 The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums. High Energy Density Phys. 7 (3), 180190.
Salmonson, J. D., Haan, S. W., Meeker, D. J., Thomas, C. A., Robey, H. F., Suter, L. J. & Dewald, E. 2010 Assessing NIF ignition capsule performance sensitivity to hot electrons. Bull. Am. Phys. Soc. 55 (15).
Slutz, S. A. & Vesey, R. A. 2012 High-gain magnetized inertial fusion. Phys. Rev. Lett. 108, 025003.
Strozzi, D. J., Tabak, M., Larson, D. J., Divol, L., Kemp, A. J., Bellei, C., Marinak, M. M. & Key, M. H. 2012 Fast-ignition transport studies: realistic electron source, integrated particle-in-cell and hydrodynamic modeling, imposed magnetic fields. Phys. Plasmas 19 (7), 072711.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Plasma Physics
  • ISSN: 0022-3778
  • EISSN: 1469-7807
  • URL: /core/journals/journal-of-plasma-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed