Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-04-30T23:37:53.229Z Has data issue: false hasContentIssue false

Improved numerical simulation model for nuclear reaction rate calculations in high-speed plasma collisions

Published online by Cambridge University Press:  11 January 2024

Bo Zeng
Affiliation:
Department of Physics, National University of Defense Technology, Changsha 410073, PR China
Zijia Zhao*
Affiliation:
Department of Physics, National University of Defense Technology, Changsha 410073, PR China
Xiaohu Yang*
Affiliation:
Department of Physics, National University of Defense Technology, Changsha 410073, PR China Collaborative Innovation Centre of IFSA, Shanghai Jiao Tong University, Shanghai 200240, PR China
Shaowu Yang
Affiliation:
Department of Physics, National University of Defense Technology, Changsha 410073, PR China
Yanyun Ma*
Affiliation:
Collaborative Innovation Centre of IFSA, Shanghai Jiao Tong University, Shanghai 200240, PR China College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, PR China
*
Email addresses for correspondence: zhaozijia@nudt.edu.cn, xhyang@nudt.edu.cn, yanyunma@126.com
Email addresses for correspondence: zhaozijia@nudt.edu.cn, xhyang@nudt.edu.cn, yanyunma@126.com
Email addresses for correspondence: zhaozijia@nudt.edu.cn, xhyang@nudt.edu.cn, yanyunma@126.com

Abstract

Beam–target reactions in fusion plasmas play an important role in both magnetic confinement fusion and inertial confinement fusion in the condition of low-density plasmas with high-velocity interactions. The traditional method for calculating beam–target reaction rate neglects the transport process of incident particles in inhomogeneous plasmas, leading to errors providing that the temperature and density in the transport path of incident particles vary obviously. An improved method considering the transport process is proposed in this paper to eliminate the deficiencies. Then the method is employed in high-speed plasma collision studies. When the initial plasma density and temperature are set to $0.5\,{\rm g}\,{\rm cm}^{-3}$ and 100 eV, it is found that the beam–target reaction rate calculated by the traditional method is almost identical to that by our method if the collision velocity is less than 600 km s$^{-1}$. However, the traditional method is not suitable for study as the collision velocity gets higher, inducing obvious differences, which can reach 70 % at 1000 km s$^{-1}$. The improved method will make large corrections to evaluate the importance of the non-negligible beam–target reaction for inertial confinement fusion schemes with large implosion velocity such as double-cone ignition and impact ignition, in which the high-speed plasmas collide with each other to realize plasma ignition.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atzeni, S. & Meyer-ter Vehn, J. 2004 The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matte. Oxford University Press.CrossRefGoogle Scholar
Betti, R. & Hurricane, O.A. 2016 Inertial-confinement fusion with lasers. Nat. Phys. 12 (5), 435448.CrossRefGoogle Scholar
Chadwick, M.B., Herman, M., Obložinský, P., Dunn, M.E., Danon, Y., Kahler, A.C., Smith, D.L., Pritychenko, B., Arbanas, G., Arcilla, R., et al. 2011 Endf/b-vii.1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data. Nucl. Data Sheets 112 (12), 28872996.CrossRefGoogle Scholar
Cordey, J.G. & Core, W.G.F. 1975 The three-component toroidal reactor. Nucl. Fusion 15 (4), 710712.CrossRefGoogle Scholar
Cordey, J.G., Keilhacker, M. & Watkins, M.L. 1987 Prospects for alpha particle heating in jet in the hot ion regime. Phys. Scr. T16, 127132.CrossRefGoogle Scholar
Dawson, J., Furth, H. & Tenney, F. 1971 Production of thermonuclear power by non-maxwellian ions in a closed magnetic field configuration. Phys. Rev. Lett. 26, 11561160.CrossRefGoogle Scholar
Dolan, T.J. 2013 Fusion Research: Principles. Elsevier.Google Scholar
Eidmann, K. 1994 Radiation transport and atomic physics modeling in high-energy-density laser-produced plasmas. Laser Part. Beams 12, 223244.CrossRefGoogle Scholar
Faik, S., Tauschwitz, A. & Iosilevskiy, I. 2018 The equation of state package feos for high energy density matter. Comput. Phys. Commun. 227, 117125.CrossRefGoogle Scholar
Fryxell, B., Olson, K., Ricker, P., Timmes, F.X., Zingale, M., Lamb, D.Q., MacNeice, P., Rosner, R., Truran, J.W. & Tufo, H. 2000 FLASH: an adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophys. J. Suppl. Ser. 131 (1), 273334.CrossRefGoogle Scholar
Fu, C., Bao, J., Chen, L., He, J., Hou, L., Li, L., Li, Y., Li, Y., Liao, G., Rhee, Y., et al. 2015 Laser-driven plasma collider for nuclear studies. Sci. Bull. 60 (13), 12111213.CrossRefGoogle Scholar
He, M.Q., Cai, H.B., Zhang, H., Dong, Q.L., Zhou, C.T., Wu, S.Z., Sheng, Z.M., Cao, L.H., Zheng, C.Y., Wu, J.F., et al. 2015 A spherical shell target scheme for laser-driven neutron sources. Phys. Plasmas 22 (12), 123103.CrossRefGoogle Scholar
Hendel, H.W., England, A.C., Jassby, D.L., Mirin, A.A. & Nieschmidt, E.B. 1986 Fusion-neutron production in the tftr with deuterium neutral-beam injection. J. Fusion Energy 5 (3), 231244.CrossRefGoogle Scholar
Henig, A., Kiefer, D., Markey, K., Gautier, D.C., Flippo, K.A., Letzring, S., Johnson, R.P., Shimada, T., Yin, L., Albright, B.J., et al. 2009 Enhanced laser-driven ion acceleration in the relativistic transparency regime. Phys. Rev. Lett. 103, 045002.CrossRefGoogle ScholarPubMed
Honrubia, J.J. & Murakami, M. 2015 Ion beam requirements for fast ignition of inertial fusion targets. Phys. Plasmas 22 (1), 012703.CrossRefGoogle Scholar
Jarvis, O. 1999 Neutron measurement techniques for tokamak plasmas. Plasma Phys. Control. Fusion 36, 209.CrossRefGoogle Scholar
Jassby, D.L. 1976 Reactor aspects of counterstreaming-ion tokamak plasmas. Nucl. Fusion 16 (1), 1529.CrossRefGoogle Scholar
Lu, H.Y., Liu, J.S., Wang, C., Wang, W.T., Zhou, Z.L., Deng, A.H., Xia, C.Q., Xu, Y., Lu, X.M., Jiang, Y.H., et al. 2009 Efficient fusion neutron generation from heteronuclear clusters in intense femtosecond laser fields. Phys. Rev. A 80 (5), 051201.CrossRefGoogle Scholar
Murakami, M., Nagatomo, H., Johzaki, T., Sakaiya, T., Velikovich, A., Karasik, M., Gus'kov, S. & Zmitrenko, N. 2014 Impact ignition as a track to laser fusion. Nucl. Fusion 54 (5), 054007.CrossRefGoogle Scholar
Murakami, M., Nagatomo, H., Sakaiya, T., Azechi, H., Fujioka, S., Shiraga, H., Nakai, M., Shigemori, K., Saito, H., Obenschain, S., et al. 2005 Towards realization of hyper-velocities for impact fast ignition. Plasma Phys. Control. Fusion 47 (12B), B815B822.CrossRefGoogle Scholar
Niikura, S., Nagami, M. & Horiike, H. 1988 Characteristics of fusion reaction rate and neutron yield in deuterium plasma. Fusion Engng Des. 6, 181191.CrossRefGoogle Scholar
Ongena, J., Koch, R., Wolf, R. & Zohm, H. 2016 Magnetic-confinement fusion. Nat. Phys. 12 (5), 398410.CrossRefGoogle Scholar
Perkins, L.J., Logan, B.G., Rosen, M.D., Perry, M.D., de la Rubia, T.D., Ghoniem, N.M., Ditmire, T., Springer, P.T. & Wilks, S.C. 2000 The investigation of high intensity laser driven micro neutron sources for fusion materials research at high fluence. Nucl. Fusion 40 (1), 119.CrossRefGoogle Scholar
Roth, M., Jung, D., Falk, K., Guler, N., Deppert, O., Devlin, M., Favalli, A., Fernandez, J., Gautier, D., Geissel, M., et al. 2013 Bright laser-driven neutron source based on the relativistic transparency of solids. Phys. Rev. Lett. 110 (4), 044802.CrossRefGoogle ScholarPubMed
Shan, L.Q, Cai, H.B, Zhang, W.S, Tang, Q., Zhang, F., Song, Z.F, Bi, B., Ge, F.J, Chen, J.B, Liu, D.X, et al. 2018 Experimental evidence of kinetic effects in indirect-drive inertial confinement fusion hohlraums. Phys. Rev. Lett. 120 (19), 195001.CrossRefGoogle ScholarPubMed
Wesson, J. & Campbell, D.J. 2011 Tokamaks. Oxford University Press.Google Scholar
Wilhelmsson, H. 1987 Evolution of burning fusion plasma density and alpha particle production in approaching ignition. Phys. Scr. 16, 176178.CrossRefGoogle Scholar
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., MacKinnon, A. & Snavely, R.A. 2001 Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas 8 (2), 542549.CrossRefGoogle Scholar
Willingale, L., Petrov, G.M., Maksimchuk, A., Davis, J., Freeman, R.R., Joglekar, A.S., Matsuoka, T., Murphy, C.D., Ovchinnikov, V.M., Thomas, A.G.R., et al. 2011 Comparison of bulk and pitcher-catcher targets for laser-driven neutron production. Phys. Plasmas 18 (8), 083106.CrossRefGoogle Scholar
Young, D. & Corey, E. 1995 A new global equation of state model for hot, dense matter. J. Appl. Phys. 78, 37483755.CrossRefGoogle Scholar
Yue, Z.W., Shen, Y.P., Wang, S.W. & Kuang, H.S. 1993 The effect of non-equilibrium relaxation process of high-speed nucleus in high temperature thermal equilibrium plasma on fusion reaction rate parameter. J. Natl Univ. Defense Technol. 15 (4), 3842.Google Scholar
Zhang, W.S., Cai, H.B., Shan, L.Q., Zhang, H.S., Gu, Y.Q. & Zhu, S.P. 2017 Anomalous neutron yield in indirect-drive inertial-confinement-fusion due to the formation of collisionless shocks in the corona. Nucl. Fusion 57 (6), 066012.CrossRefGoogle Scholar
Zhang, J., Wang, W.-M., Yang, X., Wu, D., Ma, Y.-Y., Jiao, J., Zhang, Z., Wu, F., Yuan, X., Li, Y., et al. 2020 Double-cone ignition scheme for inertial confinement fusion. Phil. Trans. R. Soc. A 378, 20200015.CrossRefGoogle ScholarPubMed
Zweiback, J., Cowan, T.E., Smith, R.A., Hartley, J.H., Howell, R., Steinke, C.A., Hays, G., Wharton, K.B., Crane, J.K. & Ditmire, T. 2000 Characterization of fusion burn time in exploding deuterium cluster plasmas. Phys. Rev. Lett. 85 (17), 36403643.CrossRefGoogle ScholarPubMed