Skip to main content
×
×
Home

Laboratory plasma physics experiments using merging supersonic plasma jets

  • S. C. Hsu (a1), A. L. Moser (a1), E. C. Merritt (a1) (a2), C. S. Adams (a1) (a2), J. P. Dunn (a1), S. Brockington (a3), A. Case (a3), M. Gilmore (a2), A. G. Lynn (a2), S. J. Messer (a3) and F. D. Witherspoon (a3)...
Abstract

We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: ne ≈ ni ~ 1016 cm−3, Te ≈ Ti ≈ 1.4 eV, Vjet ≈ 30–100 km/s, mean charge $\bar{Z}$ ≈ 1, sonic Mach number MsVjet/Cs > 10, jet diameter = 5 cm, and jet length ≈20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Laboratory plasma physics experiments using merging supersonic plasma jets
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Laboratory plasma physics experiments using merging supersonic plasma jets
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Laboratory plasma physics experiments using merging supersonic plasma jets
      Available formats
      ×
Copyright
Corresponding author
Email address for correspondence: scotthsu@lanl.gov
References
Hide All
Adams, C. S., Lynn, A. G., Gilmore, M. A., Merritt, E. C., Moser, A. L. and Hsu, S. C. 2012 Schlieren imaging diagnostic for a collisionless shock experiment. Bull. Am. Phys. Soc. 57, 130.
Awe, T. J., Adams, C. S., Davis, J. S., Hanna, D. S., Hsu, S. C. and Cassibry, J. T. 2011 One-dimensional radiation-hydrodynamic scaling studies of imploding spherical plasma liners. Phys. Plasmas 18, 072 705.
Baker, D. A. and Hammel, J. E. 1965 Experimental studies of the penetration of a plasma stream into a transverse magnetic field. Phys. Fluids 8, 713.
Batteh, J. H. 1991 Review of armature research. IEEE Trans. Magn. 27, 224.
Bellan, P. M., You, S. and Hsu, S. C. 2005 Simulating astrophysical jets in laboratory experiments. Astrophys. Space Sci. 298, 203.
Casanova, M., Larroche, O. and Matte, J.-P. 1991 Kinetic simulation of a collisional shock wave in a plasma. Phys. Rev. Lett. 67, 2143.
Cassibry, J. T., Stanic, M. and Hsu, S. C. 2013 Ideal hydrodynamic scaling relations for a stagnated imploding spherical plasma liner formed by an array of merging plasma jets. Phys. Plasmas 20, 032 706.
Davis, J. S., Hsu, S. C., Golovkin, I. E., MacFarlane, J. J. and Cassibry, J. T. 2012 One-dimensional radiation-hydrodynamic simulations of imploding spherical plasma liners with detailed equation-of-state modeling. Phys. Plasmas 19, 102 701.
Degnan, J. H.et al. 2013 Recent magneto-inertial fusion experiments on the field reversed configuration heating experiment. Nucl. Fusion 53, 093 003.
Drake, R. P. 2000 The design of laboratory experiments to produce collisionless shocks of cosmic relevance. Phys. Plasmas 7, 4690.
Drake, R. P. 2006 High-Energy-Density-Physics. Berlin: Springer.
Fiksel, G., Fox, W., Bhattacharjee, A., Barnak, D. H., Chang, P.-Y., Germaschewski, K., Hu, S. X. and Nilson, P. M. 2014 Magnetic reconnection between colliding magnetized laser-produced plasma plumes. Phys. Rev. Lett. 113, 105 003.
Fox, W., Fiksel, G., Bhattacharjee, A., Chang, P.-Y., Germaschewski, K., Hu, S. X. and Nilson, P. M. 2013 Filamentation instability of counterstreaming laser-driven plasmas. Phys. Rev. Lett. 111, 225 002.
Gourdain, P.-A. and Seyler, C. E. 2013 Impact of the hall effect on high-energy-density plasma jets. Phys. Rev. Lett. 110, 015 002.
Haas, D. M.et al. 2011 Supersonic jet formation and propagation in x-pinches. Astrophys. Space Sci. 336, 33.
Hsu, S. C. 2009 Technical summary of the first U.S. plasma jet workshop. J. Fusion Energy 28, 246.
Hsu, S. C.et al. 2012a Spherically imploding plasma liners as a standoff driver for magnetoinertial fusion. IEEE Trans. Plasma Sci. 40, 1287.
Hsu, S. C. and Bellan, P. M. 2005 On the jets, kinks, and spheromaks formed by a planar magnetized coaxial gun. Phys. Plasmas 12, 032 103.
Hsu, S. C.et al. 2012b Experimental characterization of railgun-driven supersonic plasma jets motivated by high energy density physics applications. Phys. Plasmas 19, 123 514.
Intrator, T.et al. 2004 A high density field reversed configuration (FRC) target for magnetized target fusion: first internal profile measurements of a high density FRC. Phys. Plasmas 11, 25802585.
Jaffrin, M. Y. and Probstein, R. F. 1964 Structure of a plasma shock wave. Phys. Fluids 7, 1658.
Ji, H., Toyama, H., Yamagishi, K., Shinohara, S., Fujisawa, A. and Miyamoto, K. 1991 Probe measurements in the REPUTE-1 reversed field pinch. Rev. Sci. Instrum. 62, 2326.
Kirkpatrick, R. C., Lindemuth, I. R. and Ward, M. S. 1995 Magnetized target fusion: an overview. Fusion Tech. 27, 201.
Knapp, C. E. and Kirkpatrick, R. C. 2014 Possible energy gain for a plasma-liner-driven magneto-inertial fusion concept. Phys. Plasmas 21, 070 701.
Li, C. K.et al. 2013 Structure and dynamics of colliding plasma jets. Phys. Rev. Lett. 111, 235 003.
Lindemuth, I. R. and Kirkpatrick, R. C. 1983 Parameter space for magnetized fuel targets in inertial confinement fusion. Nucl. Fusion 23, 263.
Lindemuth, I. R. and Siemon, R. E. 2009 The fundamental parameter space of controlled thermonuclear fusion. Am. J. Phys. 77, 407.
Liu, W. and Hsu, S. C. 2011 Ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a hot strongly magnetized plasma. Nucl. Fusion 51, 073 026.
Lynn, A. G., Merritt, E., Gilmore, M., Hsu, S. C., Witherspoon, F. D. and Cassibry, J. T. 2010 Diagnostics for the plasma liner experiment. Rev. Sci. Instrum. 81, 10E 115.
Merritt, E. C., Lynn, A. G., Gilmore, M. A. and Hsu, S. C. 2012a Multi-chord fiber-coupled interferometer with a long coherence length laser. Rev. Sci. Instrum. 83, 033 506.
Merritt, E. C., Lynn, A. G., Gilmore, M. A., Thoma, C., Loverich, J. and Hsu, S. C. 2012b Multi-chord fiber-coupled interferometry of supersonic plasma jets. Rev. Sci. Instrum. 83, 10D 523.
Merritt, E. C., Moser, A. L., Hsu, S. C., Adams, C. S., Dunn, J. P., Holgado, A. M. and Gilmore, M. 2014 Experimental evidence for collisional shock formation via two obliquely merging supersonic plasma jets. Phys. Plasmas 21, 055 703.
Merritt, E. C., Moser, A. L., Hsu, S. C., Loverich, J. and Gilmore, M. 2013 Experimental characterization of the stagnation layer between two obliquely merging supersonic plasma jets. Phys. Rev. Lett. 111, 085 003.
Moser, A. L. and Bellan, P. M. 2012 Magnetic reconnection from a multiscale instability cascade. Nature 482, 379.
Moser, A. L. and Hsu, S. C. 2014 Observation of ionization-mediated transition from collisionless interpenetration to collisional stagnation during merging of two supersonic plasmas. submitted; http://arxiv.org/abs/1405.2286.
Perkins, L. J., Ho, S. K. and Hammer, J. H. 1988 Deep penetration fuelling of reactor-grade tokamak plasmas with accelerated compact toroids. Nucl. Fusion 28, 1365.
Romero-Talamás, C. A., Bellan, P. M. and Hsu, S. C. 2004 Multielement magnetic probe using commercial chip inductors. Rev. Sci. Instrum. 75, 2664.
Ross, J. S., Park, H.-S., Berger, R., Divol, L., Kugland, N. L., Rozmus, W., Ryutov, D. and Glenzer, S. H. 2013 Collisionless coupling of ion and electron temperatures in counterstreaming plasma flows. Phys. Rev. Lett. 110, 145 005.
Sagdeev, R. Z. and Kennel, C. F. 1991 Collisionless shock waves. Sci. Am. 264, 106.
Santarius, J. F. 2012 Compression of a spherically symmetric deuterium-tritium plasma liner onto a magnetized deuterium-tritium target. Phys. Plasmas 19, 072 705.
Settles, G. S. 2001 Schlieren and Shadowgraph Techniques. New York: Springer.
Slutz, S. A., Herrmann, M. C., Vesey, R. A., Sefkow, A. B., Sinars, D. B., Rovang, D. C., Peterson, K. J. and Cuneo, M. E. 2010 Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field. Phys. Plasmas 17, 056 303.
Swadling, G. F.et al. 2014 Interpenetration, deflection, and stagnation of cylindrically convergent magnetized supersonic tungsten plasma flows. Phys. Rev. Lett. 113, 035 003.
Thio, Y. C. F., Knapp, C. E., Kirkpatrick, R. C., Siemon, R. E. and Turchi, P. J. 2001 A physics exploratory experiment on plasma liner formation. J. Fusion Energy 20, 1.
Thio, Y. C. F., Panarella, E., Kirkpatrick, R. C., Knapp, C. E., Wysocki, F., Parks, P. and Schmidt, G. 1999 Magnetized target fusion in a spheroidal geometry with standoff drivers. In: Proc. of the Second Int. Symp. on Current Trends in Int. Fusion Research, (ed. Panarella, E.). Ottawa: National Research Council of Canada, p. 113.
Thoma, C., Welch, D. R. and Hsu, S. C. 2013 Particle-in-cell simulations of collisionless shock formation via head-on merging of two laboratory supersonic plasma jets. Phys. Plasmas 20, 082 128.
Witherspoon, F. D., Case, A., Messer, S. J., Bomgardner, R. II, Phillips, M. W., Brockington, S. and Elton, R. 2009 A contoured gap coaxial plasma gun with injected plasma armature. Rev. Sci. Instrum. 80, 083 506.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Plasma Physics
  • ISSN: 0022-3778
  • EISSN: 1469-7807
  • URL: /core/journals/journal-of-plasma-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed