Skip to main content
×
Home
    • Aa
    • Aa

Low-frequency electrostatic wave in a metallic electron-hole-ion plasma with nanoparticles

  • P. K. SHUKLA (a1) and G. E. MORFILL (a2)
Abstract
Abstract

We investigate the dispersion property of a low-frequency electrostatic wave in a dense metallic electron-hole-ion plasma with nanoparticles. The latter are charged due to the field emission, and hence the metallic nanoparticles/nanotubes can be regarded as charged dust rods surrounded by degenerate electrons and holes, and non-degenerate ions. By using a quantum hydrodynamic model for the electrons and holes, we obtain the electron and hole number density perturbations, while the ion and dust rod number density perturbations follow the classical expressions. A dispersion relation for the low-frequency electrostatic wave in our multi-species dense metallic plasma is derived and analyzed. The possibility of exciting non-thermal electrostatic waves is also discussed.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Low-frequency electrostatic wave in a metallic electron-hole-ion plasma with nanoparticles
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Low-frequency electrostatic wave in a metallic electron-hole-ion plasma with nanoparticles
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Low-frequency electrostatic wave in a metallic electron-hole-ion plasma with nanoparticles
      Available formats
      ×
Copyright
References
Hide All
[1]Iijima S. 1991 Nature 354, 56.
[2]Ajayan P. M., Iijima S. and Ichihashi T. 1992 Phys. Rev. B. 47, 6859.
[3]Pichler T., Knupfer M., Golden M. S., Fink J., Rinzler A. and Smalley R. E. 1998 Phys. Rev. Lett. 80, 4729.
[4]Sato O., Tanaka Y., Kobayashi K. and Hasegawa A. 1993 Phys. Rev. B 48, 1947.
[5]Lin M. F. and Shung K. W.-K. 1993 Phys. Rev. B 47, 6617.
[6]Lin M. F., Chuu D. S., Huang C. S., Lin Y. K. and Shung K. W.-K. 1996 Phys. Rev. B 53, 15493.
[7]Jiang X. 1996 Phys. Rev. B 54, 1387.
[8]Mowbrey D. J., Miskovic Z. L., Goodman F. O. and Wang Y. N. 2004 Phys. Rev. B 70, 195418.
[9]Moradi A. and Khosravi J. 2007 Phys. Lett. A 371, 1.
[10]Wei L. and Wang Y. N. 2007 Phys. Rev. B 75, 193407.
[11]Guo P. S., Chen T., Chn Y. W., Zhang Z. L., Feng T., Wang L. L., Lin L. F., Sun Z. and Zhang Z. H. 2008 Solid-State Electron. 52, 877.
[12]Sodha M. S. and Dixit A. 2008 J. Appl. Phys. 104, 064909.
[13]Rao N. N., Shukla P. K. and Yu M. Y. 1990 Planet. Space Sci. 38, 543.
[14]Shukla P. K. and Silin V. P. 1992 Phys. Scripta 45, 508.
[15]Shukla P. K., Yu M. Y. and Bharuthram R. 1991 J. Geophys. Res. 96, 21343.
[16]Shukla P. K. and Rosenberg M. 1999 Phys. Plasmas 6, 1038.
[17]Haas F., Manfredi G. and Feix M. 2000 Phys. Rev. E 62, 2763.
[18]Manfredi G. 2005 Fields Inst. Commun. 46, 263.
[19]Marklund M., Brodin G., Stenflo L., Liu C. S. 2008 Europhys. Lett. 84, 17006.
[20]Gardner C. L. and Ringhofer C. 1996 Phys. Rev. E 53, 157.
[21]Shukla P. K. and Eliasson B. 2006 Phys. Rev. Lett. 96, 245001.
[22]Shukla P. K. and Eliasson B. 2007 Phys. Rev. Lett. 99, 096401.
[23]Shaikh D. and Shukla P. K. 2007 Phys. Rev. Lett. 99, 125002.
[24]Shukla P. K. 2006 Phys. Lett. A 352, 242.
[25]Shukla P. K. 2009 Phys. Lett. A 373, 256.
[26]Shukla P. K. 2009 Nature Phys. 5, 92.
[27]Shukla P. K. and Mamun A. A. 2002 Introduction to Dusty Plasma Physics Institute of Physics, Bristol.
[28]Jackson J. D. 1975 Classical Electrodynamics. New York: Wiley.
[29]Shukla P. K. and Mamun A. A. 2003 New J. Phys. 5, 17.
[30]Shukla P. K. and Eliasson B. 2009 Rev. Mod. Phys. 81, 25.
[31]Markovich P. A., Ringhofer C. A. and Schmeiser C. 1990 Semiconductor Equations. New York: Springer.
[32]Crouseilles N., Hervieux P. A. and Manfredi G. 2008 Phys. Rev. B 78, 155412.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Plasma Physics
  • ISSN: 0022-3778
  • EISSN: 1469-7807
  • URL: /core/journals/journal-of-plasma-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 14 *
Loading metrics...

Abstract views

Total abstract views: 36 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th October 2017. This data will be updated every 24 hours.