Skip to main content
×
×
Home

Multiscale modelling for tokamak pedestals

  • I. G. Abel (a1) (a2) and A. Hallenbert (a1)
Abstract

Pedestal modelling is crucial to predict the performance of future fusion devices. Current modelling efforts suffer either from a lack of kinetic physics, or an excess of computational complexity. To ameliorate these problems, we take a first-principles multiscale approach to the pedestal. We will present three separate sets of equations, covering the dynamics of edge localised modes (ELMs), the inter-ELM pedestal and pedestal turbulence, respectively. Precisely how these equations should be coupled to each other is covered in detail. This framework is completely self-consistent; it is derived from first principles by means of an asymptotic expansion of the fundamental Vlasov–Landau–Maxwell system in appropriate small parameters. The derivation exploits the narrowness of the pedestal region, the smallness of the thermal gyroradius and the low plasma $\unicode[STIX]{x1D6FD}$ (the ratio of thermal to magnetic pressures) typical of current pedestal operation to achieve its simplifications. The relationship between this framework and gyrokinetics is analysed, and possibilities to directly match our systems of equations onto multiscale gyrokinetics are explored. A detailed comparison between our model and other models in the literature is performed. Finally, the potential for matching this framework onto an open-field-line region is briefly discussed.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Multiscale modelling for tokamak pedestals
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Multiscale modelling for tokamak pedestals
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Multiscale modelling for tokamak pedestals
      Available formats
      ×
Copyright
Corresponding author
Email address for correspondence: iga@physics.org
References
Hide All
Abel, I. G. & Cowley, S. C. 2013 Multiscale gyrokinetics for rotating tokamak plasmas II: reduced models for electron dynamics. New J. Phys. 15, 023041.
Abel, I. G., Plunk, G. G., Wang, E., Barnes, M. A., Cowley, S. C., Dorland, W. & Schekochihin, A. A. 2013 Multiscale gyrokinetics for rotating tokamak plasmas: fluctuations and transport. Rep. Prog. Phys. 76, 116201.
Barnes, M. A., Abel, I. G., Dorland, W., Görler, T., Hammett, G. W. & Jenko, F. 2010 Direct multiscale coupling of a transport code to gyrokinetic turbulence codes. Phys. Plasmas 17, 056109.
Barnes, M., Parra, F. I. & Schekochihin, A. A. 2011 Critically balanced ion temperature gradient turbulence in fusion plasmas. Phys. Rev. Lett. 107 (11), 115003.
Beer, M. A., Cowley, S. C. & Hammett, G. W. 1995 Field-aligned coordinates for nonlinear simulations of tokamak turbulence. Phys. Plasmas 2, 2687.
Berkowitz, J. & Gardner, C. S. 1959 On the asymptotic series expansion of the motion of a charged particle in slowly varying fields. Commun. Pure Appl. Maths 12, 501.
Beurskens, M. N. A., Osborne, T. H., Schneider, P. A., Wolfrum, E., Frassinetti, L., Groebner, R., Lomas, P., Nunes, I., Saarelma, S., Scannell, R. et al. 2011 H-mode pedestal scaling in DIII-D, ASDEX upgrade, and JET. Phys. Plasmas 18, 056120.
Burrell, K. H., Austin, M. E., Brennan, D. P., DeBoo, J. C., Doyle, E. J., Gohil, P., Greenfield, C. M., Groebner, R. J., Lao, L. L., Luce, T. C. et al. 2002 Quiescent H-mode plasmas in the DIII-D tokamak. Plasma Phys. Control. Fusion 44, A253.
Chang, C. S., Ku, S., Adams, M., DAzevedo, G., Chen, Y., Cummings, J., Ethier, S., Greengard, L., Hahm, T. S., Hinton, F. et al. & The CPES Team 2006 Integrated particle simulation of neoclassical and turbulence physics in the tokamak pedestal/edge region using XGC. In Proceedings of the 21st IAEA Fusion Energy Conference, p. TH/P6–14. IAEA.
Chang, C. S., Ku, S., Loarte, A., Parail, V., Kchl, F., Romanelli, M., Maingi, R., Ahn, J.-W., Gray, T., Hughes, J. et al. 2017 Gyrokinetic projection of the divertor heat-flux width from present tokamaks to iter. Nucl. Fusion 57 (11), 116023.
Churchill, R. M., Chang, C. S., Ku, S. & Dominski, J. 2017 Pedestal and edge electrostatic turbulence characteristics from an XGC1 gyrokinetic simulation. Plasma Phys. Control. Fusion 59, 105014.
Connor, J. W., Hastie, R. J., Wilson, H. R. & Miller, R. L. 1998 Magnetohydrodynamic stability of tokamak edge plasmas. Phys. Plasmas 5, 2687.
Cowley, S. C., Cowley, B., Henneberg, S. A. & Wilson, H. R. 2015 Explosive instability and erupting flux tubes in a magnetized plasma. Proc. R. Soc. Lond. A 471, 20140913.
Dickinson, D., Roach, C. M., Saarelma, S., Scannell, R., Kirk, A. & Wilson, H. R. 2012 Kinetic instabilities that limit in the edge of a tokamak plasma: a picture of an -mode pedestal. Phys. Rev. Lett. 108, 135002.
Dickinson, D., Roach, C. M., Saarelma, S., Scannell, R., Kirk, A. & Wilson, H. R. 2013 Microtearing modes at the top of the pedestal. Plasma Phys. Control. Fusion 55, 074006.
Dhaeseleer, W. D., Hitchon, W. N. G., Callen, J. D. & Shohet, J. L. 1991 Flux Coordinates and Magnetic Field Structure. Springer.
Freidberg, J. P. 2014 Ideal MHD. Cambridge University Press.
Frieman, E. A. & Chen, L. 1982 Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria. Phys. Fluids 25, 502.
Goldston, R. J. 2012 Heuristic drift-based model of the power scrape-off width in low-gas-puff H-mode tokamaks. Nucl. Fusion 52 (1), 013009.
Ham, C. J., Cowley, S. C., Brochard, G. & Wilson, H. R. 2016 Nonlinear stability and saturation of ballooning modes in tokamaks. Phys. Rev. Lett. 116, 235001.
Hammett, G. W., Beer, M. A., Dorland, W., Cowley, S. C. & Smith, S. A. 1993 Developments in the gyrofluid approach to tokamak turbulence simulations. Plasma Phys. Control. Fusion 35, 973.
Hassam, A. B., Antonsen, T. M., Drake, J. F. & Liu, C. S. 1991 Spontaneous poloidal spin-up of tokamaks and the transition to the mode. Phys. Rev. Lett. 66, 309.
Hatch, D. R., Kotschenreuther, M., Mahajan, S., Valanju, P., Jenko, F., Told, D., G??rler, T. & Saarelma, S. 2016 Microtearing turbulence limiting the JET-ILW pedestal. Nucl. Fusion 56, 104003.
Hatch, D. R., Kotschenreuther, M., Mahajan, S., Valanju, P. & Liu, X. 2017 A gyrokinetic perspective on the JET-ILW pedestal. Nucl. Fusion 57, 036020.
Hazeltine, R. D. & Meiss, J. D. 2003 Plasma Confinement. Dover Publications.
Hillesheim, J. C., Dickinson, D., Roach, C. M., Saarelma, S., Scannell, R., Kirk, A., Crocker, N. A., Peebles, W. A., Meyer, H.& The MAST Team 2016 Intermediate- density and magnetic field fluctuations during inter-ELM pedestal evolution in MAST. Plasma Phys. Control. Fusion 58, 014020.
Jackson, E. A. 1960 Drift instabilities in a Maxwellian plasma. Phys. Fluids 3, 786.
Jorge, R., Ricci, P. & Loureiro, N. F. 2017 A drift-kinetic analytical model for scrape-off layer plasma dynamics at arbitrary collisionality. J. Plasma Phys. 83 (6), 905830606.
Kagan, G. & Catto, P. J. 2008 Arbitrary poloidal gyroradius effects in tokamak pedestals and transport barriers. Plasma Phys. Control. Fusion 50, 085010.
Kagan, G. & Catto, P. J. 2010 Neoclassical ion heat flux and poloidal flow in a tokamak pedestal. Plasma Phys. Control. Fusion 52, 055004.
Kotschenreuther, M., Hatch, D. R., Mahajan, S., Valanju, P., Zheng, L. & Liu, X. 2017 Pedestal transport in H-mode plasmas for fusion gain. Nucl. Fusion 57, 064001.
Kruskal, M.1958 The gyration of a charged particle. Project Matterhorn Report PM-S-33.
Ku, S., Chang, C.-S., Adams, M., Cummings, J., Hinton, F., Keyes, D., Klasky, S., Lee, W., Lin, Z., Parker, S. et al. & The CPES team 2006 Gyrokinetic particle simulation of neoclassical transport in the pedestal/scrape-off region of a tokamak plasma. J. Phys.: Conf. Ser. 46, 87.
Militello, F. & Fundamenski, W. 2011 Multi-machine comparison of drift fluid dimensionless parameters. Plasma Phys. Control. Fusion 53, 095002.
Newcomb, W. A. 1958 Motion of magnetic lines of force. Ann. Phys. 3, 347.
Parra, F. I., Barnes, M. & Peeters, A. G. 2011 Up-down symmetry of the turbulent transport of toroidal angular momentum in tokamaks. Phys. Plasmas 18, 062501.
Parra, F. I. & Catto, P. J. 2008 Limitations of gyrokinetics on transport time scales. Plasma Phys. Control. Fusion 50, 065014.
Rasmussen, J. J., Nielsen, A. H., Madsen, J., Naulin, V. & Xu, G. S. 2016 Numerical modeling of the transition from low to high confinement in magnetically confined plasma. Plasma Phys. Control. Fusion 58, 014031.
Ricci, P., Halpern, F. D., Jolliet, S., Loizu, J., Mosetto, A., Fasoli, A., Furno, I. & Theiler, C. 2012 Simulation of plasma turbulence in scrape-off layer conditions: the GBS code, simulation results and code validation. Plasma Phys. Control. Fusion 54, 124047.
Rogers, B. N. & Drake, J. F. 1999 Diamagnetic stabilization of ideal ballooning modes in the edge pedestal. Phys. Plasmas 6, 2797.
Rosenbluth, M. N. & Taylor, J. B. 1969 Plasma diffusion and stability in toroidal systems. Phys. Rev. Lett. 23, 367.
Saarelma, S., Beurskens, M. N. A., Dickinson, D., Frassinetti, L., Leyland, M. J., Roach, C. M.& Contributors EFDA-JET 2013 MHD and gyro-kinetic stability of JET pedestals. Nucl. Fusion 53, 123012.
Schneider, R., Bonnin, X., Borrass, K., Coster, D. P., Kastelewicz, H., Reiter, D., Rozhansky, V. A. & Braams, B. J. 2006 Plasma edge physics with B2-Eirene. Contrib. Plasma Phys. 46, 3.
Scott, B. D. 1997 Three-dimensional computation of drift alfvén turbulence. Plasma Phys. Control. Fusion 39, 1635.
Scott, B. D. 2007 Tokamak edge turbulence: background theory and computation. Plasma Phys. Control. Fusion 49, S25.
Shi, E. L., Hammett, G. W., Stoltzfus-Dueck, T. & Hakim, A. 2017 Gyrokinetic continuum simulation of turbulence in a straight open-field-line plasma. J. Plasma Phys. 83, 905830304.
Simakov, A. N. & Catto, P. J. 2003 Drift-ordered fluid equations for field-aligned modes in low- collisional plasma with equilibrium pressure pedestals. Phys. Plasmas 10, 4744.
Snipes, J. A., Labombard, B., Greenwald, M., Hutchinson, I. H., Irby, J., Lin, Y., Mazurenko, A. & Porkolab, M. 2001 The quasi-coherent signature of enhanced H-mode in Alcator C-Mod. Plasma Phys. Control. Fusion 43, L23.
Snyder, P. B., Burrell, K. H., Wilson, H. R., Chu, M. S., Fenstermacher, M. E., Leonard, A. W., Moyer, R. A., Osborne, T. H., Umansky, M., West, W. P. et al. 2007 Stability and dynamics of the edge pedestal in the low collisionality regime: physics mechanisms for steady-state elm-free operation. Nucl. Fusion 47, 961.
Snyder, P. B., Groebner, R. J., Hughes, J. W., Osborne, T. H., Beurskens, M., Leonard, A. W., Wilson, H. R. & Xu, X. Q. 2011 A first-principles predictive model of the pedestal height and width: development, testing and iter optimization with the eped model. Nucl. Fusion 51, 103016.
Snyder, P. B., Wilson, H. R., Ferron, J. R., Lao, L. L., Leonard, A. W., Osborne, T. H., Turnbull, A. D., Mossessian, D., Murakami, M. & Xu, X. Q. 2002 Edge localized modes and the pedestal: aA model based on coupled peeling–ballooning modes. Phys. Plasmas 9, 2037.
Stringer, T. E. 1969 Diffusion in toroidal plasmas with radial electric field. Phys. Rev. Lett. 22, 770.
Sugama, H., Okamoto, M., Horton, W. & Wakatani, M. 1996 Transport processes and entropy production in toroidal plasmas with gyrokinetic electromagnetic turbulence. Phys. Plasmas 3, 2379.
Tang, W. M., Connor, J. W. & Hastie, R. J. 1980 Kinetic-ballooning-mode theory in general geometry. Nucl. Fusion 20, 1439.
The ASDEX Team 1989 The H-Mode of ASDEX. Nucl. Fusion 29, 1959.
Wagner, F., Becker, G., Behringer, K., Campbell, D., Eberhagen, A., Engelhardt, W., Fussmann, G., Gehre, O., Gernhardt, J., Gierke, G. v. et al. 1982 Regime of improved confinement and high beta in neutral-beam-heated divertor discharges of the asdex tokamak. Phys. Rev. Lett. 49, 1408.
Wilson, H. R., Snyder, P. B., Huysmans, G. T. A. & Miller, R. L. 2002 Numerical studies of edge localized instabilities in tokamaks. Phys. Plasmas 9, 1277.
Xu, X. Q., Dudson, B. D., Snyder, P. B., Umansky, M. V., Wilson, H. R. & Casper, T. 2011 Nonlinear elm simulations based on a nonideal peelingballooning model using the BOUT++ code. Nucl. Fusion 51 (10), 103040.
Zeiler, A., Drake, J. F. & Rogers, B. 1997 Nonlinear reduced Braginskii equations with ion thermal dynamics in toroidal plasma. Phys. Plasmas 4, 2134.
Zocco, A., Loureiro, N. F., Dickinson, D., Numata, R. & Roach, C. M. 2015 Kinetic microtearing modes and reconnecting modes in strongly magnetised slab plasmas. Plasma Phys. Control. Fusion 57, 065008.
Zocco, A. & Schekochihin, A. A. 2011 Reduced fluid-kinetic equations for low-frequency dynamics, magnetic reconnection and electron heating in low-beta plasmas. Phys. Plasmas 18, 102309.
Zohm, H. 1996 Edge localized modes (ELMs). Plasma Phys. Control. Fusion 38, 105.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Plasma Physics
  • ISSN: 0022-3778
  • EISSN: 1469-7807
  • URL: /core/journals/journal-of-plasma-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 5
Total number of PDF views: 107 *
Loading metrics...

Abstract views

Total abstract views: 259 *
Loading metrics...

* Views captured on Cambridge Core between 15th April 2018 - 21st August 2018. This data will be updated every 24 hours.