Skip to main content Accessibility help
×
Home

Nonthermal effects on the elastic electron–atom collision in generalized Lorentzian semiclassical plasmas: Lorentzian renormalization shielding

  • Woo-Pyo Hong (a1) and Young-Dae Jung (a2) (a3)

Abstract

The Lorentzian renormalization plasma shielding effects on the elastic electron–atom collision are investigated in generalized Lorentzian semiclassical plasmas. The eikonal analysis and the effective interaction potential are employed to obtain the eikonal scattering phase shift, differential eikonal collision cross section, and total eikonal collision cross section as functions of the collision energy, impact parameter, nonthermal renormalization parameter, and spectral index of the Lorentzian plasma. It is found that the influence of Lorentzian renormalization shielding suppresses the eikonal scattering phase shift and, however, enhances the eikonal collision cross section in Lorentzian semiclassical plasmas. Additionally, the energy dependence on the total collision cross section in nonthermal plasmas is found to be more significant than that in thermal plasmas.

Copyright

Corresponding author

Email address for correspondence: ydjung@hanyang.ac.kr

References

Hide All
Arkhipov, Yu. V., Baimbetov, F. B. and Davletov, A. E. 2005 Phys. Plasmas 12, 082 701.
Arkhipov, Yu. V., Baimbetov, F. B. and Davletov, A. E. 2011 Phys. Rev. E 83, 016 405.
Baimbetov, F. B., Nurekenov, Kh. T. and Ramazanov, T. S. 1995 Phys. Lett. A 202, 211.
Beyer, H. F. and Shevelko, V. P. 2003 Introduction to the Physics of Highly Charged Ions, Bristol: Institute of Physics, ch. 4.
Binney, J. and Skinner, D. 2014 The Physics of Quantum Mechanics, Oxford: Oxford University Press, ch. 13.
Bransden, B. H. and Joachain, C. J. 2003 Physics of Atoms and Molecules, 2nd edn.Harlow: Prentice Hall, ch. 12.
Di Ventra, M. 2008 Electronic Transport in Nanoscale Systems, Cambridge: Cambridge University Press, ch. 2.
Dzhumagulova, K. N., Ramazanov, T. S. and Masheeva, R. U. 2013 Phys. Plasmas 20, 113 702.
Ghoshal, A. and Ho, Y. K. 2010 J. Phys. B 43, 045 203.
Ghoshal, A. and Ho, Y. K. 2011 Phys. Scr. 83, 065 301.
Hasegawa, A., Mima, K. and Duong-Van, M. 1985 Phys. Rev. Lett. 54, 2608.
Hasegawa, A. and Sato, T. 1989 Space Plasma Physics 1 Stationary Processes, Berlin: Springer, ch. 1.
Hong, W.-P. and Jung, Y.-D. 2012 Appl. Phys. Lett. 100, 074 104.
Joachain, C. J. 1983 Quantum Collision Theory, Amsterdam: North Holland, ch. 9.
Jung, Y.-D. 2014 Phys. Plasmas 21, sp.
Kim, S. S. and Jung, Y.-D. 2013 Phys. Plasmas 20, 062 104.
Li, H. W. and Kar, S. 2012 Eur. Phys. J. D 66, 304.
Marklund, M. and Shukla, P. K. 2006 Rev. Mod. Phys. 78, 591.
Melrose, D. 2008 Quantum Plasmadynamics, New York: Springer, chap 7.
Metawei, Z. 2000 Acta Phys. Polonica B 31, 713.
Omarbakiyeva, Y. A., Fortmann, C., Ramazanov, T. S. and Röpke, G. 2010 Phys. Rev. E 82, 026 407.
Pandey, M. K., Lin, Y.-C. and Ho, Y. K. 2012 Phys. Plasmas 19, 062 104.
Pandey, M. K., Lin, Y.-C. and Ho, Y. K. 2013 Phys. Plasmas 20, 022 104.
Ramazanov, T. S. and Dzhumagulova, K. N. 2002 Phys. Plasmas 9, 3758.
Ramazanov, T. S., Dzhumagulova, K. N. and Gabdullin, M. T. 2010 Phys. Plasmas 17, 042 703.
Ramazanov, T. S., Dzhumagulova, K. N. and Omarbakiyeva, Y. A. 2005 Phys. Plasmas 12, 092 702.
Ramazanov, T. S. and Kodanova, S. K. 2001 Phys. Plasmas 8, 5049.
Ramazanov, T. S., Moldabekov, Zh. A., Dzhumagulova, K. N. and Muratov, M. M. 2011 Phys. Plasmas 18, 103 705.
Ramazanov, T. S. and Turekhanova, K. N. 2005 Phys. Plasmas 12, 102 502.
Rubab, N. and Murtaza, G. 2006a Phys. Scr. 73, 178.
Rubab, N. and Murtaza, G. 2006b Phys. Scr. 74, 145.
Shevelko, V. P., Kato, D., Tawara, H. and Tolstikhina, I. Yu. 2010 Plasma Fusion Res. 5, S2012.
Shevelko, V. P., Tawara, H., Scheuermann, F., Fabian, B., Müller, A. and Salzborn, E. 2005 J. Phys. B 38, 525.
Shevelko, V. P. and Vainshtein, L. A. 1993 Atomic Physics for Hot Plasmas, Bristol: Institute of Physics, chap. 4.
Shukla, P. K. and Eliasson, B. 2007 Phys. Lett. A 372, 2897.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Related content

Powered by UNSILO

Nonthermal effects on the elastic electron–atom collision in generalized Lorentzian semiclassical plasmas: Lorentzian renormalization shielding

  • Woo-Pyo Hong (a1) and Young-Dae Jung (a2) (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.