Skip to main content
×
×
Home

On the accuracy of the symmetric ergodic magnetic limiter map in tokamaks

  • A. R. SOHRABI (a1), S. M. JAZAYERI (a1) and M. MOLLABASHI (a1)
Abstract

A new symmetric symplectic map for an ergodic magnetic limiter (EML) is proposed. A rigorous mapping technique based on the Hamilton–Jacobi equation is used for its derivation. The system is composed of the equilibrium field, which is fully integrable, and a Hamiltonian perturbation. The equilibrium poloidal flux function is a solution of the Grad–Schlüter–Shafranov equation. This equation is written in polar toroidal coordinate in order to take into account the outward Shafranov shift. The static perturbation field breaks the exact axisymmetry of the equilibrium field and creates a region of chaotic field lines near the plasma edge. The new symmetric EML map is compared with the conventional (asymmetric) EML map which is derived by applying delta-function method. The accuracy of the maps is considered through mean energy error criterion and maximal Lyapunov exponents. For asymmetric and symmetric maps the approximate location of the main cantorus near the edge of plasma is determined with high accuracy by using mean energy error. The forward–backward error criterion is applied to show the relation between the accuracy of the symmetric EML map and the number of EML rings. We also report on the effect of the number of EML rings on the maximal Lyapunov exponent of the symmetric EML map.

Copyright
References
Hide All
[1]Wesson, J. 1982 Tokamaks. Oxford, U.K.: Oxford University Press.
[2]Friedberg, J. P. 1987 Ideal Magnetohydrodynamics. New York: Plenum.
[3]Kerst, D. W. 1962 J. Nucl. Energy, Part C 4, 253.
[4]Cary, J. R. and Littlejohn, R. G. 1983 Ann. Phys. (N.Y.) 151, 1.
[5]Salat, A. and Naturforsch, Z. 1985 Teil A 40, 959.
[6]Elsasser, K.Plasma Phys. Control. Fusion 28, 1743.
[7]Hinton, F. L. and Hazeltine, R. D. 1976 Rev. Mod. Phys. 48, 239.
[8]Boozer, A. H. 1984 Phys. Fluids 27, 2055.
[9]Morrison, P. J. 1998 Rev. Mod. Phys. 70, 467; 2000 Phys. Plasma 7, 2279.
[10]Abdullaev, S. S. 2004 Nucl. Fusion 44, S12.
[11]Balescu, R., Vlad, M. and Spineanu, F. 1998 Phys. Rev. E 58, 951.
[12]Finken, K. H. 1997 Fusion Eng. Des. 37, 379; 1997 Nucl. Fusion 37, 583; 1998 Trans. Fusion Technol. 33, 291.
[13]Nicolai, A. 1997 Fusion Eng. Des. 37, 347.
[14]Kaleck, A., Hassler, M. and Evans, T. 1997 Fusion Eng. Des. 37, (1997)353.
[15]Arnold, V. I. 1989 Mathematical Methods of Classical Mechanics. Berlin: Springer.
[16]Boozer, A. H. 1983 Phys. Fluids 26, 1288.
[17]Meiss, J. D. 1992 Rev. Mod. Phys. 64, 795.
[18]Abdullaev, S. S. 1999 J. Phys. A: Math. Gen. 32, 2745.
[19]Abdullaev, S. S. 2002 J. Phys. A 35, 2811.
[20]Abdullaev, S. S. 2006 Construction of Mappings for Hamiltonian Systems and Their Applications. Berlin: Springer.
[21]Balescu, R. 1998 Phys. Rev. E 58, 3781.
[22]Engelhardt, W., Feneberg, W. J. 1978 Nucl. Mater. 76 & 77, (1978) 518.
[23]Feneberg, W. and Wolf, G. H. 1981 Nucl. Fusion 21, 669.
[24]Samain, A., Grosman, A. and Feneberg, W. J. 1982 Nucl. Mater. 111 & 112, 408.
[25]Abdullaev, S. S., Finken, K. H., Jakubowski, M. W., Kasilov, S. V., Kobayashi, M., Reiser, D., Reiter, D., Runov, A. M. and Wolf, R. 2003 Nucl. Fusion 43, 299.
[26]Abdullaev, S. S., Finken, K. H., Kaleck, A., Spatschek, K. H. and Wolf, G. 1998 Czechoslovak J. Phys. 48, 319.
[27]Karger, F. and Lackner, F. 1977 Phys. Lett. A 61, 385.
[28]McCool, S. C., Wootton, A. J., Aydemir, A. Y. et al. 1989 Nucl. Fusion 29, 547.
[29]Martin, T. J. and Taylor, J. B. 1984 Plasma Phys. Control. Fusion 26, 321.
[30]Portela, J. S. E., Viana, R. L. and Caldas, I. L. 2003 Physica A 317, 411.
[31]Sohrabi, A. R. and Jazayeri, S. M. 2008 In: The Sixth EUROMECH Nonlinear Dynamics Conference (ENOC 2008). Russia: Saint Petersburg.
[32]Yu, X. Y. and DeGrassie, J. S. (Nov. 1986) Fusion Research Center, Report FRC-292, University of Texas, Austin, TX.
[33]Ullmann, K. and Caldas, I. L. 2000 Chaos, Solit. Fract. 11, 2129.
[34]da Silva, E. C., Caldas, I. L. and Viana, R. L. 2001 Phys. Plasmas 8, 2855.
[35]da Silva, E. C., Caldas, I. L. and Viana, R. L. 2002 Chaos Solitons Fractals 14, 403.
[36]Roberto, M., da Silva, E. C., Caldas, I. L., Viana and Braz, R. L. 2004 J. Phys. 34, 1759.
[37]Roberto, M., da Silva, E. C., Caldas, I. L. and Viana, R. L. 2004 Phys. Plasmas 11, 214.
[38]Constantinescu, D., Dumbrajs, O., Igochine, V. and Weyssow, B. 2008 Nucl. Fusion 48, 024017.
[39]Kucinski, M. Y. and Caldas, I. L. 1987 Z. Naturforsch 42a, 1124.
[40]Kucinski, M. Y., Caldas, I. L., Monteiro, L. H. A. and Okano, V. J. 1990 Plasma Phys. 44, 303.
[41]Bartle, R. G. and Sherbet, D. R. 1982 Introduction to Real Analysis. New York: Wiley.
[42]Niven, I. 1956 Irrational Numbers. The Mathematical Association of America MR 18, 195C.
[43]Efthymiopoulos, C., Contopoulos, G., Voglis, N. and Dvorak, R. J. 1997 Phys. A: Math. Gen. 30, 8167.
[44]Aubry, S. 1978 In: Solitons and Condensed Matter Physics (ed. Bishop, A. R. and Schneider, T.). Berlin: Springer, p. 264.
[45]Percival, I. C. 1979 In: Nonlinear Dynamics and the Beam-Beam Interaction (ed. Month, M. and Herrera, J. C.). Woodbury, NY: American Institute of Physics, p. 302.
[46]Lichtenberg, A. J. M. A. 1992 Lieberman, Regular and Chaotic Dynamics, 2nd edn.New York: Springer Verlag.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Plasma Physics
  • ISSN: 0022-3778
  • EISSN: 1469-7807
  • URL: /core/journals/journal-of-plasma-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 9 *
Loading metrics...

Abstract views

Total abstract views: 66 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th June 2018. This data will be updated every 24 hours.