Skip to main content
×
×
Home

On the relativistic large-angle electron collision operator for runaway avalanches in plasmas

  • O. Embréus (a1), A. Stahl (a1) and T. Fülöp (a1)
Abstract

Large-angle Coulomb collisions lead to an avalanching generation of runaway electrons in a plasma. We present the first fully conservative large-angle collision operator, derived from the relativistic Boltzmann operator. The relation to previous models for large-angle collisions is investigated, and their validity assessed. We present a form of the generalized collision operator which is suitable for implementation in a numerical kinetic equation solver, and demonstrate the effect on the runaway-electron growth rate. Finally we consider the reverse avalanche effect, where runaways are slowed down by large-angle collisions, and show that the choice of operator is important if the electric field is close to the avalanche threshold.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      On the relativistic large-angle electron collision operator for runaway avalanches in plasmas
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      On the relativistic large-angle electron collision operator for runaway avalanches in plasmas
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      On the relativistic large-angle electron collision operator for runaway avalanches in plasmas
      Available formats
      ×
Copyright
Corresponding author
Email address for correspondence: tunde@chalmers.se
References
Hide All
Akama, H. 1970 Relativistic Boltzmann equation for plasmas. J. Phys. Soc. Japan 28, 478.
Aleynikov, P., Aleynikova, K., Breizman, B., Huijsmans, G., Konovalov, S., Putvinski, S. & Zhogolev, V. 2014 Kinetic modelling of runaway electrons and their mitigation in iter. In International Atomic Energy Agency 25th Fusion Energy Conference, Saint Petersburg, Russia, pp. 1318.
Aleynikov, P. & Breizman, B. N. 2015 Theory of two threshold fields for relativistic runaway electrons. Phys. Rev. Lett. 114, 155001.
Besedin, N. & Pankratov, I. 1986 Stability of a runaway electron beam. Nucl. Fusion 26, 807.
Boozer, A. H. 2015 Theory of runaway electrons in iter: equations, important parameters, and implications for mitigation. Phys. Plasmas 22 (3), 032504.
Breizman, B. N. 2014 Marginal stability model for the decay of runaway electron current. Nucl. Fusion 54 (7), 072002.
Cercignani, C. & Kremer, G. 2002 The Relativistic Boltzmann Equation: Theory and Applications. Springer.
Chiu, S., Rosenbluth, M., Harvey, R. & Chan, V. 1998 Fokker–Planck simulations mylb of knock-on electron runaway avalanche and bursts in tokamaks. Nucl. Fusion 38 (11), 17111721.
Cohen, R. 1976 Runaway electrons in an impure plasma. Phys. Fluids 19, 239.
Connor, J. & Hastie, R. 1975 Relativistic limitations on runaway electrons. Nucl. Fusion 15 (3), 415424.
Dreicer, H. 1960 Electron and ion runaway in a fully ionized gas ii. Phys. Rev. 117, 329342.
Eriksson, L.-G. & Helander, P. 2003 Simulation of runaway electrons during tokamak disruptions. Comput. Phys. Commun. 154 (3), 175196.
Fülöp, T., Pokol, G., Helander, P. & Lisak, M. 2006 Destabilization of magnetosonic-whistler waves by a relativistic runaway beam. Phys. Plasmas 13, 062506.
Gill, R. 1993 Generation and loss of runaway electrons following disruptions in jet. Nucl. Fusion 33, 1613.
Gurevich, A., Milikh, G. & Roussel-Dupre, R. 1992 Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm. Phys. Lett. A 165 (5–6), 463468.
Gurevich, A., Milikh, G. & Roussel-Dupre, R. 1994 Nonuniform runaway air-breakdown. Phys. Lett. A 187 (2), 197203.
Gurevich, A. V. & Zybin, K. P. 2001 Runaway breakdown and electric discharges in thunderstorms. Phys.-Usp. 44 (11), 1119.
Harvey, R. W., Chan, V. S., Chiu, S. C., Evans, T. E. & Rosenbluth, M. N. 2000 Runaway electron production in diii-d killer pellet experiments, calculated with the cql3d/kprad model. Phys. Plasmas 7, 4590.
Helander, P., Eriksson, L.-G. & Andersson, F. 2002 Runaway acceleration during magnetic reconnection in tokamaks. Plasma Phys. Control. Fusion 44, B247–62.
Helander, P., Lisak, M. & Ryutov, D. 1993 Formation of hot ion populations in fusion plasmas by close collisions with fast particles. Plasma Phys. Control. Fusion 35 (3), 363.
Hollmann, E. M., Aleynikov, P., Fülöp, T., Humphreys, D., Izzo, V., Lehnen, M., Loarte, A., Lukash, V. E., Papp, G., Parks, P. et al. 2015 Status of research toward the iter disruption mitigation system. Phys. Plasmas 22 (2), 021802.
Holman, G. D. 1985 Acceleration of runaway electrons and joule heating in solar flares. Astrophys. J. 293, 584594.
Jaspers, R. 1993 Experimental investigation of runaway electron generation in textor. Nucl. Fusion 33, 1775.
Jayakumar, R., Fleischmann, H. & Zweben, S. 1993 Collisional avalanche exponentiation of runaway electrons in electrified plasmas. Phys. Lett. A 172, 447451.
Landau, L. 1936 Kinetic equation for the coulomb effect. Physikalische Zeitschrift der Sowjetunion 10, 154.
Landau, L. D. 1965 The transport equation in the case of coulomb interactions. In Collected Papers of L. D. Landau (ed. Ter Haar, D.), p. 163. Pergamon.
Landreman, M., Stahl, A. & Fülöp, T. 2014 Numerical calculation of the runaway electron distribution function and associated synchrotron emission. Comput. Phys. Commun. 185 (3), 847855.
Lehtinen, N. G., Bell, T. F. & Inan, U. S. 1999 Monte Carlo simulation of runaway mev electron breakdown with application to red sprites and terrestrial gamma ray flashes. J. Geophys. Res. 104 (A11), 2469924712.
Lifshitz, E. & Pitaevski, L. 1981 Physical Kinetics. Butterworth-Heinemann.
Møller, C. 1932 Zur theorie des durchgangs schneller elektronen durch materie. Ann. Phys. 406 (5), 531.
Montgomery, D. & Tidman, D. 1964 Plasma Kinetic Theory. McGraw-Hill.
Nilsson, E., Decker, J., Peysson, Y., Granetz, R., Saint-Laurent, F. & Vlainic, M. 2015 Kinetic modelling of runaway electron avalanches in tokamak plasmas. Plasma Phys. Control. Fusion 57, 095006.
Rosenbluth, M. N., MacDonald, W. M. & Judd, D. L. 1957 Fokker–Planck equation for an inverse-square force. Phys. Rev. 107, 16.
Rosenbluth, M. & Putvinski, S. 1997 Theory for avalanche of runaway electrons in tokamaks. Nucl. Fusion 37, 13551362.
Smith, H., Helander, P., Eriksson, L.-G. & Fülöp, T. 2005 Runaway electron generation in a cooling plasma. Phys. Plasmas 12 (12), 122505.
Sokolov, Y. 1979 ‘Multiplication’ of accelerated electrons in a tokamak. JETP Lett. 29, 218221.
Stahl, A., Embréus, O., Papp, G., Landreman, M. & Fülöp, T. 2016 Kinetic modelling of runaway electrons in dynamic scenarios. Nucl. Fusion 56 (11), 112009.
Trubnikov, B. 1965 Reviews of Plasma Physics, vol. 1. Consultants Bureau.
Weinberg, S. 2005 The Quantum Theory of Fields, Volume 1: Foundations. Cambridge University Press.
Wilson, C. T. R. 1925 The acceleration of -particles in strong electric fields such as those of thunderclouds. Math. Proc. Camb. Phil. Soc. 22, 534.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Plasma Physics
  • ISSN: 0022-3778
  • EISSN: 1469-7807
  • URL: /core/journals/journal-of-plasma-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed