Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-03T20:36:08.165Z Has data issue: false hasContentIssue false

Overview of neutral beam injectors for plasma heating and diagnostics developed at Budker INP

Published online by Cambridge University Press:  14 May 2024

Igor Shikhovtsev*
Affiliation:
Budker Institute of Nuclear Physics, Novosibirsk, Russia
Alexander Ivanov
Affiliation:
Budker Institute of Nuclear Physics, Novosibirsk, Russia
Vladimir Davydenko
Affiliation:
Budker Institute of Nuclear Physics, Novosibirsk, Russia
Yuri Belchenko
Affiliation:
Budker Institute of Nuclear Physics, Novosibirsk, Russia
Grigoriy Abdrashitov
Affiliation:
Budker Institute of Nuclear Physics, Novosibirsk, Russia
Viktor Belov
Affiliation:
Budker Institute of Nuclear Physics, Novosibirsk, Russia
Timur Akhmetov
Affiliation:
Budker Institute of Nuclear Physics, Novosibirsk, Russia
Vladislav Amirov
Affiliation:
Budker Institute of Nuclear Physics, Novosibirsk, Russia
Alexander Brul
Affiliation:
Budker Institute of Nuclear Physics, Novosibirsk, Russia
Peter Deichuli
Affiliation:
Budker Institute of Nuclear Physics, Novosibirsk, Russia
Nikita Deichuli
Affiliation:
Budker Institute of Nuclear Physics, Novosibirsk, Russia
Alexander Donin
Affiliation:
Budker Institute of Nuclear Physics, Novosibirsk, Russia
Alexander Dranichnikov
Affiliation:
Budker Institute of Nuclear Physics, Novosibirsk, Russia
Roman Finashin
Affiliation:
Budker Institute of Nuclear Physics, Novosibirsk, Russia
Daniil Gavrisenko
Affiliation:
Budker Institute of Nuclear Physics, Novosibirsk, Russia
Alexander Gorbovsky
Affiliation:
Budker Institute of Nuclear Physics, Novosibirsk, Russia
Valerian Kapitonov
Affiliation:
Budker Institute of Nuclear Physics, Novosibirsk, Russia
Vyacheslav Kolmogorov
Affiliation:
Budker Institute of Nuclear Physics, Novosibirsk, Russia
Alexey Kondakov
Affiliation:
Budker Institute of Nuclear Physics, Novosibirsk, Russia
Ivan Maslakov
Affiliation:
Budker Institute of Nuclear Physics, Novosibirsk, Russia
Vladimir Oreshonok
Affiliation:
Budker Institute of Nuclear Physics, Novosibirsk, Russia
Vladimir Rashchenko
Affiliation:
Budker Institute of Nuclear Physics, Novosibirsk, Russia
Andrey Sanin
Affiliation:
Budker Institute of Nuclear Physics, Novosibirsk, Russia
Alexey Sorokin
Affiliation:
Budker Institute of Nuclear Physics, Novosibirsk, Russia
Oleg Sotnikov
Affiliation:
Budker Institute of Nuclear Physics, Novosibirsk, Russia
Nikolay Stupishin
Affiliation:
Budker Institute of Nuclear Physics, Novosibirsk, Russia
Roman Vakhrushev
Affiliation:
Budker Institute of Nuclear Physics, Novosibirsk, Russia
Vadim Vointsev
Affiliation:
Budker Institute of Nuclear Physics, Novosibirsk, Russia
*
Email address for correspondence: i.v.shikhovtsev@inp.nsk.su

Abstract

An overview of the neutral beam injectors developed at the Budker Institute of Nuclear Physics in Novosibirsk during the last 10 years is presented. These neutral injectors are used for plasma diagnostics, heating and current drive in modern fusion devices with magnetic confinement. An arc or a radio-frequency (RF) discharge generates a plasma in the ion sources of the injectors, and a positive hydrogen or deuterium ion beam is extracted and accelerated by a multiaperture ion-optical system (IOS). The accelerated ion beam is converted into a neutral one in a gas target. The precision multiaperture IOS with spherically concave electrodes provides ballistic focusing of the neutral beam. The high-energy, high-power beam injector based on negative ions, which is currently under development, is described as well. It comprises a RF negative ion source and a wide-aperture electrostatic accelerator separated from the source by a low-energy beam transport line, thereby improving the injector reliability.

Type
Review Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Belchenko, Yu., Abdrashitov, G., Deichuli, P., Ivanov, A., Gorbovsky, A., Kondakov, A., Sanin, A., Sotnikov, O. & Shikhovtsev, I. 2016 Inductively driven surface-plasma negative ion source for N-NBI use (invited). Rev. Sci. Instrum. 87 (2), 02B316.CrossRefGoogle ScholarPubMed
Belchenko, Yu.I., et al. 2018 Studies of ion and neutral beam physics and technology at the Budker Institute of Nuclear Physics, SB RAS. Phys. Usp. 61 (6), 531581.CrossRefGoogle Scholar
Belchenko, Yu.I., Burdakov, A.V., Davydenko, V.I., Gorbovskii, A.I., Emelev, I.S., Ivanov, A.A., Sanin, A.L. & Sotnikov, O.Z. 2021 Possible scheme of atomic beam injector for plasma heating and current drive at the TRT tokamak. Plasma Phys. Rep. 47 (11), 11511157.CrossRefGoogle Scholar
Belchenko, Yu.I., Dimov, G.I. & Dudnikov, V.G. 1974 A powerful injector of neutrals with a surface-plasma source of negative ions. Nucl. Fusion 14 (1), 113114.CrossRefGoogle Scholar
Brown, I.G. (Ed.) 2004 The Physics and Technology of Ion Sources, 2nd edn. Wiley-VCH.CrossRefGoogle Scholar
Brul, A.V., et al. 2021 High-power neutral beam injector with tunable beam energy for plasma heating and stabilization. Plasma Phys. Rep. 47 (6), 518525.CrossRefGoogle Scholar
Davydenko, V., Deichuli, P., Ivanov, A., Stupishin, N., Kapitonov, V., Kolmogorov, A., Ivanov, I., Sorokin, A. & Shikhovtsev, I. 2016 Recent progress in development of neutral beams for fusion studies. AIP Conf. Proc. 1771 (1), 030025.CrossRefGoogle Scholar
Deichuli, P., et al. 2012 Commissioning of heating neutral beams for COMPASS-D tokamak. Rev. Sci. Instrum. 83 (2), 02B114.CrossRefGoogle ScholarPubMed
Deichuli, P., Davydenko, V., Ivanov, A., Korepanov, S., Mishagin, V., Smirnov, A., Sorokin, A. & Stupishin, N. 2015 Low energy, high power hydrogen neutral beam for plasma heating. Rev. Sci. Instrum. 86 (11), 113509.CrossRefGoogle ScholarPubMed
Gavrisenko, D.Yu., Shikhovtsev, I.V., Belchenko, Yu.I., Gorbovskiy, A.I., Kondakov, A.A., Sotnikov, O.Z., Sanin, A.L., Vointsev, V.A. & Finashin, R.A. 2023 Comparative analysis of high-frequency plasma drivers with various protective screens for atomic injectors with multi-second pulse duration. Plasma Phys. Rep. 49 (10), 11691179.CrossRefGoogle Scholar
Gota, H., et al. 2021 Overview of C-2W: high temperature, steady-state beam-driven field-reversed configuration plasmas. Nucl. Fusion 61 (10), 106039.CrossRefGoogle Scholar
Gupta, D.K., Nations, M., Sweeney, J., Aviles, J., Leinweber, H. & Marshall, R.S. 2021 Main ion charge exchange recombination spectroscopy on C-2W FRC plasmas. Rev. Sci. Instrum. 92 (7), 073508.CrossRefGoogle ScholarPubMed
Heinemann, B., Fantz, U., Kraus, W., Schiesko, L., Wimmer, C., Wünderlich, D., Bonomo, F., Fröschle, M., Nocentini, R. & Riedl, R. 2017 Towards large and powerful radio frequency driven negative ion sources for fusion. New J. Phys. 19 (1), 015001.CrossRefGoogle Scholar
Hemsworth, R.S. & Inoue, T. 2005 Positive and negative ion sources for magnetic fusion. IEEE Trans. Plasma Sci. 33 (6), 17991813.CrossRefGoogle Scholar
Hemsworth, R.S., et al. 2017 Overview of the design of the ITER heating neutral beam injectors. New J. Phys. 19 (2), 025005.CrossRefGoogle Scholar
Hiratsuka, J., Kashiwagi, M., Ichikawa, M., Umeda, N., Saquilayan, G.Q., Tobari, H., Watanabe, K., Kojima, A. & Yoshida, M. 2020 Achievement of high power and long pulse negative ion beam acceleration for JT-60SA NBI. Rev. Sci. Instrum. 91 (2), 023506.CrossRefGoogle ScholarPubMed
Hopf, C., Starnella, G., den Harder, N. & Fantz, U. 2021 Neutral beam injection for fusion reactors: technological constraints versus functional requirements. Nucl. Fusion 61 (10), 106032.CrossRefGoogle Scholar
Inoue, T. 2023 Development of High-Current Negative-Ion-Based Beam Source at the National Institutes for Quantum Science and Technology (QST) in Japan for JT-60 U and ITER Neutral Beam Injectors. Springer Series on Atomic, Optical, and Plasma Physics, vol. 124, pp. 577607. Springer International Publishing.Google Scholar
Ivanov, A.A., et al. 2013 Development of a negative ion-based neutral beam injector in Novosibirsk. Rev. Sci. Instrum. 85 (2), 02B102.CrossRefGoogle Scholar
Kalvas, T., Tarvainen, O., Ropponen, T., Steczkiewicz, O., Ärje, J. & Clark, H. 2010 IBSIMU: a three-dimensional simulation software for charged particle optics. Rev. Sci. Instrum. 81 (2), 02B703.CrossRefGoogle ScholarPubMed
Karpushov, A.N., et al. 2017 Neutral beam heating on the TCV tokamak. Fusion Engng Des. 123, 468472.CrossRefGoogle Scholar
Karpushov, A.N., et al. 2023 Upgrade of the neutral beam heating system on the TCV tokamak — second high energy neutral beam. Fusion Eng. Des. 187, 113384.CrossRefGoogle Scholar
Kurskiev, G.S., et al. 2023 Hot ion mode in the Globus-M2 spherical tokamak. Plasma Phys. Rep. 49 (4), 403418.CrossRefGoogle Scholar
Listopad, A., Coenen, J., Davydenko, V., Ivanov, A., Mishagin, V., Savkin, V., Schweer, B., Shulzhenko, G. & Uhlemann, R. 2012 Use of the focusing multi-slit ion optical system at RUssian Diagnostic Injector (RUDI). Rev. Sci. Instrum. 83 (2), 02B707.CrossRefGoogle ScholarPubMed
McNamara, S.A.M., et al. 2023 Achievement of ion temperatures in excess of 100 million degrees Kelvin in the compact high-field spherical tokamak ST40. Nucl. Fusion 63 (5), 054002.CrossRefGoogle Scholar
Nations, M., Gupta, D., Sweeney, J., Frausto, L. & Tobin, M. 2021 Measurements of impurity ion temperature and velocity distributions via active charge-exchange recombination spectroscopy in C-2W. Rev. Sci. Instrum. 92 (5), 053512.CrossRefGoogle ScholarPubMed
Shchegolev, P.B., et al. 2023 Neutral injection complex for Globus-M2 spherical tokamak. Plasma Phys. Rep. 49 (12), 15011514.CrossRefGoogle Scholar
Singh, M.J., Boilson, D., Polevoi, A.R., Oikawa, T. & Mitteau, R. 2017 Heating neutral beams for ITER: negative ion sources to tune fusion plasmas. New J. Phys. 19 (5), 055004.CrossRefGoogle Scholar
Skovorodin, D.I., et al. 2023 Gas-dynamic multiple-mirror trap GDMT. Plasma Phys. Rep. 49 (9), 10391086.CrossRefGoogle Scholar
Sorokin, A., Belov, V., Davydenko, V., Deichuli, P., Ivanov, A., Podyminogin, A., Shikhovtsev, I., Shulzhenko, G., Stupishin, N. & Tiunov, M. 2010 Characterization of 1 MW, 40 keV, 1 s neutral beam for plasma heating. Rev. Sci. Instrum. 81 (2), 02B108.CrossRefGoogle ScholarPubMed
Sorokin, A.V., Akhmetov, T.D., Brul, A.V., Davydenko, V.I., Ivanov, A.A., Karpushov, A.N., Mishagin, V.V. & Shikhovtsev, I.V. 2020 Update of ion-optical system of neutral beam of tokamak à configuration variable. Rev. Sci. Instrum. 91 (1), 013323.CrossRefGoogle ScholarPubMed
Sotnikov, O., et al. 2021 Development of high-voltage negative ion based neutral beam injector for fusion devices. Nucl. Fusion 61 (11), 116017.CrossRefGoogle Scholar
Speth, E., et al. 2006 Overview of the RF source development programme at IPP garching. Nucl. Fusion 46 (6), S220S238.CrossRefGoogle Scholar
Stupishin, N.V., et al. 2016 Multi-second neutral beam injector (60 kV, 6 A) for plasma diagnostics in the upgraded T-15 device. AIP Conf. Proc. 1771 (1), 050012.CrossRefGoogle Scholar
Takeiri, Y., et al. 2010 High performance of neutral beam injectors for extension of LHD operational regime. Fusion Sci. Technol. 58 (1), 482488.CrossRefGoogle Scholar
Tec 2020 Technical manual for heating neutral beam injector for the TCV tokamak.Google Scholar