Skip to main content
    • Aa
    • Aa

Parametric instabilities of circularly polarized large-amplitude dispersive Alfvén waves: excitation of parallel-propagating electromagnetic daughter waves

  • Adolfo F. Viñas (a1) and Melvyn L. Goldstein (a1)

We investigate the parametric decay and modulational instabilities of a large-amplitude circularly polarized dispersive Alfvén wave. Our treatment is more general than that of previous derivations based on the two-fluid equations in that we allow for propagation of the unstable daughter waves at arbitrary angles to the background magnetic field, although our main concern in this paper is the exploration of new aspects of propagation parallel to the DC magnetic field. In addition to the well-known coupling of pump waves to electrostatic daughter waves, we find a new parametric channel where the pump wave couples directly to electromagnetic daughter waves. Excitation of the electromagnetic instability occurs only for modulation (k/k0 ≤ 1) and not for decay (k/k0 < 1). In contrast with the modulational instability excited by the electrostatic coupling, the electromagnetic modulational instability exists for both left-hand (K > 0) and right-hand (K < 0) polarization. For large k/k0, the electromagnetic channel dominates, while at lower values the electrostatic channel has a larger growth rate for modest values of dispersion, pump-wave amplitude and plasma β. Unlike the electrostatic modulational instability, the growth rate of the electromagnetic instability increases monotonically with increasing pump wave amplitude. This analysis confirms that, for decay, the dominant process is coupling to electrostatic daughter waves, at least for parallel propagation. For modulation, the coupling to electromagnetic daughter waves usually dominates, suggesting that the parametric modulational instability is really an electromagnetic phenomenon.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

B. Abraham-Shrauner & W. C. Feldman 1977 J. Geophys. Res. 82, 618.

J. W. Armstrong , J. M. Cordes & B. J. Rickett 1981 Nature, 291, 561.

R. Cohen 1975 J. Geophys. Res. 80, 3678.

R. H. Cohen & R. L. Dewar 1974 J. Geophys. Res. 79, 4174.

N. F. Derby 1978 Astrophys. J. 224, 1013.

T. Flå , E. Mjølhus & J. Wyller 1989 Physica Scripta, 40, 219.

M. L. Goldstein 1978 Astrophys. J. 219, 700.

M. L. Goldstein , H. K. Wong , A. F. Viñas & C. W. Smith 1985 J. Geophys. Res. 90, 302.

M. Hoshino & M. L. Goldstein 1989 Phys. Fluids B 1, 1405.

B. Inhester 1990 J. Geophys. Res. 95, 10525.

J. A. Ionson & R. S. B. Ong 1976 Plasma Phys. 18, 809.

C. N. Lashmore-Davies 1976 Phys. Fluids, 19, 587.

M. Longtin & B. U. Ö Sonnerup 1986 J. Geophys. Res. 91, 6816.

E. Mjølhus & J. Wyller 1986 Physica Scripta, 33, 442.

C. R. Ovenden , H. A. Shah & S. J. Schwartz 1983 J. Geophys. Res. 88, 6095.

D. C. Robinson & M. G. Rusbridge 1971 Phys. Fluids, 14, 2499.

J.-I. Sakai & B. U. Ö. Sonnerup 1983 J. Geophys. Res. 88, 9069.

S. R. Spangler 1985 Astrophys. J. 299, 122.

T. Terasawa , M. Hoshino , J.-I. Sakai & T. Hada 1986 J. Geophys. Res. 91, 4171.

A. F. Viñas & M. L. Goldstein 1991 J. Plasma Phys. 46, 129.

A. F. Viñas , M. L. Goldstein & M. H. Acuña 1984 J. Geophys. Res. 89, 6813.

H. K. Wong & M. L. Goldstein 1986 J. Geophys. Res. 91, 5617.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Plasma Physics
  • ISSN: 0022-3778
  • EISSN: 1469-7807
  • URL: /core/journals/journal-of-plasma-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 9 *
Loading metrics...

Abstract views

Total abstract views: 97 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th September 2017. This data will be updated every 24 hours.