Skip to main content
×
×
Home

Parametric instability, inverse cascade and the  $1/f$ range of solar-wind turbulence

  • Benjamin D. G. Chandran
Abstract

In this paper, weak-turbulence theory is used to investigate the nonlinear evolution of the parametric instability in three-dimensional low- $\unicode[STIX]{x1D6FD}$ plasmas at wavelengths much greater than the ion inertial length under the assumption that slow magnetosonic waves are strongly damped. It is shown analytically that the parametric instability leads to an inverse cascade of Alfvén wave quanta, and several exact solutions to the wave kinetic equations are presented. The main results of the paper concern the parametric decay of Alfvén waves that initially satisfy $e^{+}\gg e^{-}$ , where $e^{+}$ and $e^{-}$ are the frequency ( $f$ ) spectra of Alfvén waves propagating in opposite directions along the magnetic field lines. If $e^{+}$ initially has a peak frequency  $f_{0}$ (at which $fe^{+}$ is maximized) and an ‘infrared’ scaling  $f^{p}$ at smaller  $f$ with $-1 , then $e^{+}$ acquires an $f^{-1}$ scaling throughout a range of frequencies that spreads out in both directions from  $f_{0}$ . At the same time, $e^{-}$ acquires an $f^{-2}$ scaling within this same frequency range. If the plasma parameters and infrared $e^{+}$ spectrum are chosen to match conditions in the fast solar wind at a heliocentric distance of 0.3 astronomical units (AU), then the nonlinear evolution of the parametric instability leads to an $e^{+}$ spectrum that matches fast-wind measurements from the Helios spacecraft at 0.3 AU, including the observed $f^{-1}$ scaling at $f\gtrsim 3\times 10^{-4}~\text{Hz}$ . The results of this paper suggest that the $f^{-1}$ spectrum seen by Helios in the fast solar wind at $f\gtrsim 3\times 10^{-4}~\text{Hz}$ is produced in situ by parametric decay and that the $f^{-1}$ range of $e^{+}$ extends over an increasingly narrow range of frequencies as $r$ decreases below 0.3 AU. This prediction will be tested by measurements from the Parker Solar Probe.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Parametric instability, inverse cascade and the  $1/f$ range of solar-wind turbulence
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Parametric instability, inverse cascade and the  $1/f$ range of solar-wind turbulence
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Parametric instability, inverse cascade and the  $1/f$ range of solar-wind turbulence
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Email address for correspondence: benjamin.chandran@unh.edu
References
Hide All
Araneda, J. A., Marsch, E. & Viñas, A. F. 2008 Proton core heating and beam formation via parametrically unstable Alfvén-cyclotron waves. Phys. Rev. Lett. 100 (12), 125003.
Bale, S. D., Goetz, K., Harvey, P. R., Turin, P., Bonnell, J. W., Dudok de Wit, T., Ergun, R. E., MacDowall, R. J., Pulupa, M., Andre, M. et al. 2016 The FIELDS instrument suite for solar probe plus. Measuring the coronal plasma and magnetic field, plasma waves and turbulence, and radio signatures of solar transients. Space Sci. Rev. 204, 4982.
van Ballegooijen, A. A. & Asgari-Targhi, M. 2016 Heating and acceleration of the fast solar wind by Alfvén wave turbulence. Astrophys. J. 821, 106.
van Ballegooijen, A. A. & Asgari-Targhi, M. 2017 Direct and inverse cascades in the acceleration region of the fast solar wind. Astrophys. J. 835, 10.
Barnes, A. 1966 Collisionless damping of hydromagnetic waves. Phys. Fluids 9, 14831495.
Bavassano, B., Pietropaolo, E. & Bruno, R. 2000 On the evolution of outward and inward Alfvénic fluctuations in the polar wind. J. Geophys. Res. 105, 1595915964.
Chandran, B. D. G. 2008 Weakly turbulent magnetohydrodynamic waves in compressible low- plasmas. Phys. Rev. Lett. 101 (23), 235004.
Chandran, B. D. G., Dennis, T. J., Quataert, E. & Bale, S. D. 2011 Incorporating kinetic physics into a two-fluid solar-wind model with temperature anisotropy and low-frequency Alfvén-wave turbulence. Astrophys. J. 743, 197.
Chandran, B. D. G. & Hollweg, J. V. 2009 Alfvén wave reflection and turbulent heating in the solar wind from 1 solar radius to 1 AU: an analytical treatment. Astrophys. J. 707, 16591667.
Cohen, R. H. & Dewar, R. L. 1974 On the backscatter instability of solar wind Alfven waves. J. Geophys. Res. 79, 41744178.
Cranmer, S. R. & van Ballegooijen, A. A. 2005 On the generation, propagation, and reflection of Alfvén waves from the solar photosphere to the distant heliosphere. Astrophys. J. Suppl. 156, 265293.
Cranmer, S. R., van Ballegooijen, A. A. & Edgar, R. J. 2007 Self-consistent coronal heating and solar wind acceleration from anisotropic magnetohydrodynamic turbulence. Astrophys. J. Suppl. 171, 520551.
Del Zanna, L., Velli, M. & Londrillo, P. 2001 Parametric decay of circularly polarized Alfvén waves: multidimensional simulations in periodic and open domains. Astron. Astrophys. 367, 705718.
Dobrowolny, M., Mangeney, A. & Veltri, P. 1980 Fully developed anisotropic hydromagnetic turbulence in interplanetary space. Phys. Rev. Lett. 45, 144147.
Dorfman, S. & Carter, T. A. 2016 Observation of an Alfvén wave parametric instability in a laboratory plasma. Phys. Rev. Lett. 116 (19), 195002.
Elsasser, W. M. 1950 The hydromagnetic equations. Phys. Rev. 79, 183.
Forman, M. A., Wicks, R. T. & Horbury, T. S. 2011 Detailed fit of ‘Critical Balance’ theory to solar wind turbulence measurements. Astrophys. J. 733, 76.
Galeev, A. A. & Oraevskii, V. N. 1963 The stability of Alfvén waves. Sov. Phys. Dokl. 7, 988.
Galtier, S., Nazarenko, S. V., Newell, A. C. & Pouquet, A. 2000 A weak turbulence theory for incompressible magnetohydrodynamics. J. Plasma Phys. 63, 447488.
Goldreich, P. & Sridhar, S. 1995 Toward a theory of interstellar turbulence. 2: strong Alfvenic turbulence. Astrophys. J. 438, 763775.
Goldstein, M. L. 1978 An instability of finite amplitude circularly polarized Alfven waves. Astrophys. J. 219, 700704.
Heinemann, M. & Olbert, S. 1980 Non-WKB Alfven waves in the solar wind. J. Geophys. Res. 85, 13111327.
Heyvaerts, J. & Priest, E. R. 1983 Coronal heating by phase-mixed shear Alfven waves. Astron. Astrophys. 117, 220234.
Hollweg, J. V. 1978 Fast wave evanescence in the solar corona. Geophys. Res. Lett. 5, 731734.
Hollweg, J. V. 1994 Beat, modulational, and decay instabilities of a circularly polarized Alfven wave. J. Geophys. Res. 99, 23.
Hollweg, J. V., Cranmer, S. R. & Chandran, B. D. G. 2010 Coronal Faraday rotation fluctuations and a wave/turbulence-driven model of the solar wind. Astrophys. J. 722, 14951503.
van der Holst, B., Sokolov, I. V., Meng, X., Jin, M., Manchester IV, W. B., Tóth, G. & Gombosi, T. I. 2014 Alfvén wave solar model (AWSoM): coronal heating. Astrophys. J. 782, 81.
Horbury, T. S., Forman, M. & Oughton, S. 2008 Anisotropic scaling of magnetohydrodynamic turbulence. Phys. Rev. Lett. 101 (17), 175005.
Howes, G. G., Bale, S. D., Klein, K. G., Chen, C. H. K., Salem, C. S. & TenBarge, J. M. 2012 The slow-mode nature of compressible wave power in solar wind turbulence. Astrophys. J. Lett. 753, L19.
Inhester, B. 1990 A drift-kinetic treatment of the parametric decay of large-amplitude Alfven waves. J. Geophys. Res. 95, 1052510539.
Kasper, J. C., Abiad, R., Austin, G., Balat-Pichelin, M., Bale, S. D., Belcher, J. W., Berg, P., Bergner, H., Berthomier, M., Bookbinder, J. et al. 2015 Solar wind electrons alphas and protons (SWEAP) investigation: design of the solar wind and coronal plasma instrument suite for solar probe plus. Space Sci. Rev. 204, 131186.
Klein, K. G., Howes, G. G., TenBarge, J. M., Bale, S. D., Chen, C. H. K. & Salem, C. S. 2012 Using synthetic spacecraft data to interpret compressible fluctuations in solar wind turbulence. Astrophys. J. 755, 159.
Kopp, R. A. & Holzer, T. E. 1976 Dynamics of coronal hole regions. I – steady polytropic flows with multiple critical points. Solar Phys. 49, 4356.
Lithwick, Y. & Goldreich, P. 2001 Compressible magnetohydrodynamic turbulence in interstellar plasmas. Astrophys. J. 562, 279296.
Lithwick, Y., Goldreich, P. & Sridhar, S. 2007 Imbalanced strong MHD turbulence. Astrophys. J. 655, 269274.
Malara, F., Primavera, L. & Veltri, P. 2000 Nonlinear evolution of parametric instability of a large-amplitude nonmonochromatic Alfvén wave. Phys. Plasmas 7, 28662877.
Mallet, A., Schekochihin, A. A. & Chandran, B. D. G. 2015 Refined critical balance in strong Alfvénic turbulence. Mon. Not. R. Astron. Soc. 449, L77L81.
Maneva, Y. G., Viñas, A. F. & Ofman, L. 2013 Turbulent heating and acceleration of ions by spectra of Alfvén-cyclotron waves in the expanding solar wind: 1.5-D hybrid simulations. J. Geophys. Res. (Space Physics) 118, 28422853.
Maron, J. & Goldreich, P. 2001 Simulations of incompressible magnetohydrodynamic turbulence. Astrophys. J. 554, 11751196.
Marsch, E., Rosenbauer, H., Schwenn, R., Muehlhaeuser, K. & Neubauer, F. M. 1982 Solar wind helium ions – observations of the HELIOS solar probes between 0.3 and 1 AU. J. Geophys. Res. 87, 3551.
Marsch, E. & Tu, C.-Y. 1990 On the radial evolution of MHD turbulence in the inner heliosphere. J. Geophys. Res. 95, 82118229.
Matthaeus, W. H. & Goldstein, M. L. 1986 Low-frequency noise in the interplanetary magnetic field. Phys. Rev. Lett. 57, 495498.
Meyrand, R., Kiyani, K. H. & Galtier, S. 2015 Weak magnetohydrodynamic turbulence and intermittency. J. Fluid Mech. 770, R1.
Ng, C. S. & Bhattacharjee, A. 1996 Interaction of shear-Alfven wave packets: implication for weak magnetohydrodynamic turbulence in astrophysical plasmas. Astrophys. J. 465, 845.
Parker, E. N. 1958 Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664676.
Perez, J. C. & Chandran, B. D. G. 2013 Direct numerical simulations of reflection-driven, reduced MHD turbulence from the sun to the Alfven critical point. Astrophys. J. 776, 124.
Podesta, J. J. 2009 Dependence of solar-wind power spectra on the direction of the local mean magnetic field. Astrophys. J. 698, 986999.
Raymond, J. C., McCauley, P. I., Cranmer, S. R. & Downs, C. 2014 The solar corona as probed by comet Lovejoy (C/2011 W3). Astrophys. J. 788, 152.
Sagdeev, R. Z. & Galeev, A. A. 1969 Nonlinear Plasma Theory. W. A. Benjamin.
Schekochihin, A. A., Nazarenko, S. V. & Yousef, T. A. 2012 Weak Alfvén-wave turbulence revisited. Phys. Rev. E. 85 (3), 036406.
Schekochihin, A. A., Parker, J. T., Highcock, E. G., Dellar, P. J., Dorland, W. & Hammett, G. W. 2016 Phase mixing versus nonlinear advection in drift-kinetic plasma turbulence. J. Plasma Phys. 82 (2), 905820212.
Shi, M., Li, H., Xiao, C. & Wang, X. 2017 The parametric decay instability of Alfvén waves in turbulent plasmas and the applications in the solar wind. Astrophys. J. 842, 63.
Spangler, S. R. 1986 The evolution of nonlinear Alfven waves subject to growth and damping. Phys. Fluids 29, 25352547.
Spangler, S. R. 1989 Kinetic effects of Alfven wave nonlinearity. I – ponderomotive density fluctuations. Phys. Fluids B 1, 17381746.
Spangler, S. R. 1990 Kinetic effects on Alfven wave nonlinearity. II – the modified nonlinear wave equation. Phys. Fluids B 2, 407418.
Suzuki, T. K. & Inutsuka, S.-i. 2005 Making the corona and the fast solar wind: a self-consistent simulation for the low-frequency Alfvén waves from the photosphere to 0.3 AU. Astrophys. J. Lett. 632, L49L52.
Taylor, G. I. 1938 The spectrum of turbulence. Proc. R. Soc. Lond. A 164, 476490.
Tenerani, A., Velli, M. & Hellinger, P. 2017 The parametric instability of Alfvén waves: effects of temperature anisotropy. Astrophys. J. 851 (2), 99.
Terasawa, T., Hoshino, M., Sakai, J.-I. & Hada, T. 1986 Decay instability of finite-amplitude circularly polarized Alfven waves – a numerical simulation of stimulated Brillouin scattering. J. Geophys. Res. 91, 41714187.
Tu, C. & Marsch, E. 1995 MHD structures, waves and turbulence in the solar wind: observations and theories. Space Sci. Rev. 73, 1210.
Vasquez, B. J. 1995 Simulation study of the role of ion kinetics in low-frequency wave train evolution. J. Geophys. Res. 100, 17791792.
Velli, M. 1993 On the propagation of ideal, linear Alfven waves in radially stratified stellar atmospheres and winds. Astron. Astrophys. 270, 304314.
Velli, M., Grappin, R. & Mangeney, A. 1989 Turbulent cascade of incompressible unidirectional Alfven waves in the interplanetary medium. Phys. Rev. Lett. 63, 18071810.
Verdini, A., Grappin, R., Pinto, R. & Velli, M. 2012 On the origin of the spectrum in the solar wind magnetic field. Astrophys. J. Lett. 750, L33.
Verdini, A., Velli, M., Matthaeus, W. H., Oughton, S. & Dmitruk, P. 2010 A turbulence-driven model for heating and acceleration of the fast wind in coronal holes. Astrophys. J. Lett. 708, L116L120.
Verscharen, D., Chandran, B. D. G., Bourouaine, S. & Hollweg, J. V. 2015 Deceleration of alpha particles in the solar wind by instabilities and the rotational force: implications for heating, Azimuthal flow, and the Parker spiral magnetic field. Astrophys. J. 806, 157.
Yao, S., He, J.-S., Marsch, E., Tu, C.-Y., Pedersen, A., Rème, H. & Trotignon, J. G. 2011 Multi-scale anti-correlation between electron density and magnetic field strength in the solar wind. Astrophys. J. 728, 146.
Zhou, Y. & Matthaeus, W. H. 1989 Non-WKB evolution of solar wind fluctuations: a turbulence modeling approach. Geophys. Res. Lett. 16, 755758.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Plasma Physics
  • ISSN: 0022-3778
  • EISSN: 1469-7807
  • URL: /core/journals/journal-of-plasma-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 12
Total number of PDF views: 174 *
Loading metrics...

Abstract views

Total abstract views: 294 *
Loading metrics...

* Views captured on Cambridge Core between 25th January 2018 - 18th August 2018. This data will be updated every 24 hours.