Skip to main content
×
×
Home

Particle acceleration in explosive relativistic reconnection events and Crab Nebula gamma-ray flares

  • Maxim Lyutikov (a1), Serguei Komissarov (a1) (a2), Lorenzo Sironi (a3) and Oliver Porth (a2) (a4)
Abstract

We develop a model of gamma-ray flares of the Crab Nebula resulting from the magnetic reconnection events in a highly magnetised relativistic plasma. We first discuss physical parameters of the Crab Nebula and review the theory of pulsar winds and termination shocks. We also review the principle points of particle acceleration in explosive reconnection events [Lyutikov et al., J. Plasma Phys., vol. 83(6), p. 635830601 (2017a); J. Plasma Phys., vol. 83(6), p. 635830602 (2017b)]. It is required that particles producing flares are accelerated in highly magnetised regions of the nebula. Flares originate from the poleward regions at the base of the Crab’s polar outflow, where both the magnetisation and the magnetic field strength are sufficiently high. The post-termination shock flow develops macroscopic (not related to the plasma properties on the skin-depth scale) kink-type instabilities. The resulting large-scale magnetic stresses drive explosive reconnection events on the light-crossing time of the reconnection region. Flares are produced at the initial stage of the current sheet development, during the X-point collapse. The model has all the ingredients needed for Crab flares: natural formation of highly magnetised regions, explosive dynamics on the light travel time, development of high electric fields on macroscopic scales and acceleration of particles to energies well exceeding the average magnetic energy per particle.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Particle acceleration in explosive relativistic reconnection events and Crab Nebula gamma-ray flares
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Particle acceleration in explosive relativistic reconnection events and Crab Nebula gamma-ray flares
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Particle acceleration in explosive relativistic reconnection events and Crab Nebula gamma-ray flares
      Available formats
      ×
Copyright
Corresponding author
Email address for correspondence: lyutikov@purdue.edu
References
Hide All
Abdo, A. A., Ackermann, M., Ajello, M., Allafort, A., Baldini, L., Ballet, J., Barbiellini, G., Bastieri, D. et al. 2011 Gamma-ray flares from the Crab Nebula. Science 331, 739.
Alfvén, H. 1939 On the motion of cosmic rays in interstellar space. Phys. Rev. 55, 425429.
Arons, J. 2012 Pulsar wind nebulae as cosmic pevatrons: a current sheet’s tale. Space Sci. Rev. 173, 341367.
Begelman, M. C. 1998 Instability of toroidal magnetic field in jets and plerions. Astrophys. J. 493, 291.
Beskin, V. S., Kuznetsova, I. V. & Rafikov, R. R. 1998 On the MHD effects on the force-free monopole outflow. Mon. Not. R. Astron. Soc. 299, 341348.
Bessho, N. & Bhattacharjee, A. 2012 Fast magnetic reconnection and particle acceleration in relativistic low-density electron-positron plasmas without guide field. Astrophys. J. 750, 129.
Bietenholz, M. F., Hester, J. J., Frail, D. A. & Bartel, N. 2004 The Crab nebula’s wisps in radio and optical. Astrophys. J. 615, 794804.
Bietenholz, M. F., Kassim, N., Frail, D. A., Perley, R. A., Erickson, W. C. & Hajian, A. R. 1997 The radio spectral index of the Crab nebula. Astrophys. J. 490, 291301.
Blandford, R. D. 2002 To the Lighthouse. In Lighthouses of the Universe: The Most Luminous Celestial Objects and Their Use for Cosmology (ed. Gilfanov, M., Sunyeav, R. & Churazov, E.), p. 381.
Blandford, R. D. & Znajek, R. L. 1977 Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 179, 433456.
Bucciantini, N., Arons, J. & Amato, E. 2011 Modelling spectral evolution of pulsar wind nebulae inside supernova remnants. Mon. Not. R. Astron. Soc. 410, 381398.
Buehler, R., Scargle, J. D., Blandford, R. D., Baldini, L., Baring, M. G., Belfiore, A., Charles, E., Chiang, J., D’Ammando, F., Dermer, C. D. et al. 2012 Gamma-ray activity in the Crab Nebula: the exceptional flare of 2011 April. Astrophys. J. 749, 26.
Camus, N. F., Komissarov, S. S., Bucciantini, N. & Hughes, P. A. 2009 Observations of ‘wisps’ in magnetohydrodynamic simulations of the Crab Nebula. Mon. Not. R. Astron. Soc. 400, 12411246.
Cerutti, B., Uzdensky, D. A. & Begelman, M. C. 2012a Extreme particle acceleration in magnetic reconnection layers: application to the gamma-ray flares in the Crab Nebula. Astrophys. J. 746, 148.
Cerutti, B., Werner, G. R., Uzdensky, D. A. & Begelman, M. C. 2012b Beaming and rapid variability of high-energy radiation from relativistic pair plasma reconnection. Astrophys. J. Lett. 754, L33.
Cerutti, B., Werner, G. R., Uzdensky, D. A. & Begelman, M. C. 2013 Simulations of particle acceleration beyond the classical synchrotron burnoff limit in magnetic reconnection: an explanation of the Crab flares. Astrophys. J. 770, 147.
Cerutti, B., Werner, G. R., Uzdensky, D. A. & Begelman, M. C. 2014 Gamma-ray flares in the Crab Nebula: a case of relativistic reconnection? Phys. Plasmas 21 (5), 056501.
Clausen-Brown, E. & Lyutikov, M. 2012 Crab nebula gamma-ray flares as relativistic reconnection minijets. Mon. Not. R. Astron. Soc. 426, 13741384.
Coroniti, F. V. 1990 Magnetically striped relativistic magnetohydrodynamic winds – the Crab nebula revisited. Astrophys. J. 349, 538545.
Del Zanna, L., Amato, E. & Bucciantini, N. 2004 Axially symmetric relativistic MHD simulations of pulsar wind nebulae in supernova remnants. On the origin of torus and jet-like features. Astron. Astrophys. 421, 10631073.
Giannios, D., Uzdensky, D. A. & Begelman, M. C. 2010 Fast TeV variability from misaligned minijets in the jet of M87. Mon. Not. R. Astron. Soc. 402, 16491656.
Gomez, H. L., Krause, O., Barlow, M. J., Swinyard, B. M., Owen, P. J., Clark, C. J. R., Matsuura, M., Gomez, E. L., Rho, J., Besel, M.-A. et al. 2012 A cool dust factory in the Crab nebula: a herschel study of the filaments. Astrophys. J. 760, 96.
Guo, F., Liu, Y.-H., Daughton, W. & Li, H. 2015 Particle acceleration and plasma dynamics during magnetic reconnection in the magnetically dominated regime. Astrophys. J. 806, 167.
Harding, A. K., Stern, J. V., Dyks, J. & Frackowiak, M. 2008 High-altitude emission from pulsar slot gaps: the crab pulsar. Astrophys. J. 680, 13781393.
Hester, J. J. 2008 The Crab nebula: an astrophysical chimera. Annu. Rev. Astron. Astrophys. 46, 127155.
Hester, J. J., Mori, K., Burrows, D., Gallagher, J. S., Graham, J. R., Halverson, M., Kader, A., Michel, F. C. & Scowen, P. 2002 Hubble space telescope and chandra monitoring of the Crab synchrotron nebula. Astrophys. J. Lett. 577, L49L52.
Hillas, A. M., Akerlof, C. W., Biller, S. D., Buckley, J. H., Carter-Lewis, D. A., Catanese, M., Cawley, M. F., Fegan, D. J., Finley, J. P., Gaidos, J. A. et al. 1998 The spectrum of teravolt gamma rays from the Crab nebula. Astrophys. J. 503, 744759.
Kardashev, N. S. 1962 Nonstationarity of spectra of young sources of nonthermal radio emission. Sov. Astron. 6, 317.
Kennel, C. F. & Coroniti, F. V. 1984a Confinement of the Crab pulsar’s wind by its supernova remnant. Astrophys. J. 283, 694709.
Kennel, C. F. & Coroniti, F. V. 1984b Magnetohydrodynamic model of Crab nebula radiation. Astrophys. J. 283, 710730.
Komissarov, S. S. 2012 Shock dissipation in magnetically dominated impulsive flows. Mon. Not. R. Astron. Soc. 422, 326346.
Komissarov, S. S. 2013 Magnetic dissipation in the Crab nebula. Mon. Not. R. Astron. Soc. 428, 24592466.
Komissarov, S. S. & Barkov, M. V. 2007 Magnetar-energized supernova explosions and gamma-ray burst jets. Mon. Not. R. Astron. Soc. 382, 10291040.
Komissarov, S. S., Barkov, M. V., Vlahakis, N. & Königl, A. 2007 Magnetic acceleration of relativistic active galactic nucleus jets. Mon. Not. R. Astron. Soc. 380, 5170.
Komissarov, S. S. & Lyubarsky, Y. E. 2004 Synchrotron nebulae created by anisotropic magnetized pulsar winds. Mon. Not. R. Astron. Soc. 349, 779792.
Komissarov, S. S. & Lyutikov, M. 2011 On the origin of variable gamma-ray emission from the Crab nebula. Mon. Not. R. Astron. Soc. 414, 20172028.
Komissarov, S. S., Vlahakis, N., Königl, A. & Barkov, M. V. 2009 Magnetic acceleration of ultrarelativistic jets in gamma-ray burst sources. Mon. Not. R. Astron. Soc. 394, 11821212.
Kovalenko, A. V., Pynzar’, A. V. & Udal’Tsov, V. A. 1994 Observations of supernova remnants at Pushchino. Catalog of flux densities at meter wavelengths. Astron. Zh. 71, 110119.
Lawson, J. D. 1973 Simple models of solid and hollow relativistic electron beams with arbitrarily high current. Phys. Fluids 16, 12981299.
Lyubarsky, Y. & Kirk, J. G. 2001 Reconnection in a striped pulsar wind. Astrophys. J. 547, 437448.
Lyubarsky, Y. E. 2003a Fast magnetosonic waves in pulsar winds. Mon. Not. R. Astron. Soc. 339, 765771.
Lyubarsky, Y. E. 2003b The termination shock in a striped pulsar wind. Mon. Not. R. Astron. Soc. 345, 153160.
Lyubarsky, Y. E. 2012 Highly magnetized region in pulsar wind nebulae and origin of the Crab gamma-ray flares. Mon. Not. R. Astron. Soc. 427, 14971502.
Lyutikov, M. 2003 Role of reconnection in AGN jets. New Astron. Rev. 47, 513515.
Lyutikov, M. 2006a Did Swift measure gamma-ray burst prompt emission radii? Mon. Not. R. Astron. Soc. 369, L5L8.
Lyutikov, M. 2006b The electromagnetic model of gamma-ray bursts. New J. Phys. 8, 119.
Lyutikov, M. 2010 A high-sigma model of pulsar wind nebulae. Mon. Not. R. Astron. Soc. 405, 18091815.
Lyutikov, M., Balsara, D. & Matthews, C. 2012 Crab GeV flares from the corrugated termination shock. Mon. Not. R. Astron. Soc. 422, 31183129.
Lyutikov, M., Komissarov, S. S. & Porth, O. 2016 The inner knot of the Crab nebula. Mon. Not. R. Astron. Soc. 456, 286299.
Lyutikov, M., Pariev, V. I. & Blandford, R. D. 2003 Polarization of prompt gamma-ray burst emission: evidence for electromagnetically dominated outflow. Astrophys. J. 597, 9981009.
Lyutikov, M., Sironi, L., Komissarov, S. S. & Porth, O. 2017a Explosive X-point collapse in relativistic magnetically dominated plasma. J. Plasma Phys. 83 (6), 635830601.
Lyutikov, M., Sironi, L., Komissarov, S. S. & Porth, O. 2017b Particle acceleration in relativistic magnetic flux-merging events. J. Plasma Phys. 83 (6), 635830602.
Meyer, M., Horns, D. & Zechlin, H.-S. 2010 The Crab Nebula as a standard candle in very high-energy astrophysics. Astron. Astrophys. 523, A2.
Michel, F. C. 1969 Relativistic stellar-wind torques. Astrophys. J. 158, 727.
Mizuno, Y., Lyubarsky, Y., Nishikawa, K.-I. & Hardee, P. E. 2011 Three-dimensional relativistic magnetohydrodynamic simulations of current-driven instability. II. Relaxation of pulsar wind nebula. Astrophys. J. 728, 90.
Ng, C.-Y. & Romani, R. W. 2004 Fitting pulsar wind tori. Astrophys. J. 601, 479484.
Olmi, B., Del Zanna, L., Amato, E. & Bucciantini, N. 2015 Constraints on particle acceleration sites in the Crab nebula from relativistic magnetohydrodynamic simulations. Mon. Not. R. Astron. Soc. 449, 31493159.
Olmi, B., Del Zanna, L., Amato, E., Bucciantini, N. & Mignone, A. 2016 Multi-D magnetohydrodynamic modelling of pulsar wind nebulae: recent progress and open questions. J. Plasma Phys. 82 (6), 635820601.
Pacholczyk, A. G. 1970 Radio astrophysics. Nonthermal processes in galactic and extragalactic sources. In Series of Books in Astronomy and Astrophysics, Freeman.
Porth, O., Komissarov, S. S. & Keppens, R. 2013 Solution to the sigma problem of pulsar wind nebulae. Mon. Not. R. Astron. Soc. 431, L48L52.
Porth, O., Komissarov, S. S. & Keppens, R. 2014 Three-dimensional magnetohydrodynamic simulations of the Crab nebula. Mon. Not. R. Astron. Soc. 438, 278306.
Rees, M. J. & Gunn, J. E. 1974 The origin of the magnetic field and relativistic particles in the Crab Nebula. Mon. Not. R. Astron. Soc. 167, 112.
Riquelme, M. A. & Spitkovsky, A. 2011 Electron injection by whistler waves in non-relativistic shocks. Astrophys. J. 733, 63.
Rudy, A., Horns, D., DeLuca, A., Kolodziejczak, J., Tennant, A., Yuan, Y., Buehler, R., Arons, J., Blandford, R., Caraveo, P. et al. 2015 Characterization of the inner knot of the Crab: the site of the gamma-ray flares? Astrophys. J. 811, 24.
Shklovsky, I. S. 1970 Pulsar NP 0532 and the injection of relativistic particles into the Crab nebula. Astrophys. J. Lett. 159, L77L80.
Sironi, L., Petropoulou, M. & Giannios, D. 2015 Relativistic jets shine through shocks or magnetic reconnection?. Mon. Not. R. Astron. Soc. 450, 183191.
Sironi, L. & Spitkovsky, A. 2009 Particle acceleration in relativistic magnetized collisionless pair shocks: dependence of shock acceleration on magnetic obliquity. Astrophys. J. 698, 15231549.
Sironi, L. & Spitkovsky, A. 2011 Acceleration of particles at the termination shock of a relativistic striped wind. Astrophys. J. 741, 39.
Sironi, L. & Spitkovsky, A. 2012 Particle-in-cell simulations of shock-driven reconnection in relativistic striped winds. Comput. Sci. Disc. 5 (1), 014014.
Sironi, L. & Spitkovsky, A. 2014 Relativistic reconnection: an efficient source of non-thermal particles. Astrophys. J. Lett. 783, L21.
Sironi, L., Spitkovsky, A. & Arons, J. 2013 The maximum energy of accelerated particles in relativistic collisionless shocks. Astrophys. J. 771, 54.
Spitkovsky, A. 2005 Simulations of relativistic collisionless shocks: shock structure and particle acceleration. In Astrophysical Sources of High Energy Particles and Radiation (ed. Bulik, T., Rudak, B. & Madejski, G.), American Institute of Physics Conference Series, vol. 801, pp. 345350.
Striani, E., Tavani, M., Vittorini, V., Donnarumma, I., Giuliani, A., Pucella, G., Argan, A., Bulgarelli, A., Colafrancesco, S., Cardillo, M. et al. 2013 Variable gamma-ray emission from the Crab Nebula: short flares and long ‘waves’. Astrophys. J. 765, 52.
Syrovatskii, S. I. 1981 Pinch sheets and reconnection in astrophysics. Annu. Rev. Astron. Astrophys. 19, 163229.
Tavani, M., Bulgarelli, A., Vittorini, V., Pellizzoni, A., Striani, E., Caraveo, P., Weisskopf, M. C., Tennant, A. et al. 2011 Discovery of powerful gamma-ray flares from the Crab nebula. Science 331, 736.
Tchekhovskoy, A., Philippov, A. & Spitkovsky, A. 2016 Three-dimensional analytical description of magnetized winds from oblique pulsars. Mon. Not. R. Astron. Soc. 457, 33843395.
Thompson, T. A., Chang, P. & Quataert, E. 2004 Magnetar spin-down, hyperenergetic supernovae, and gamma-ray bursts. Astrophys. J. 611, 380393.
Usov, V. V. 1992 Millisecond pulsars with extremely strong magnetic fields as a cosmological source of gamma-ray bursts. Nature 357, 472474.
Uzdensky, D. A. 2011 Magnetic reconnection in extreme astrophysical environments. Space Sci. Rev. 160, 4571.
Weisskopf, M. C., Tennant, A. F., Arons, J., Blandford, R., Buehler, R., Caraveo, P., Cheung, C. C., Costa, E., de Luca, A., Ferrigno, C. et al. 2013 Chandra, Keck, and VLA observations of the Crab nebula during the 2011-April gamma-ray flare. Astrophys. J. 765, 56.
Yuan, Y. & Blandford, R. D. 2015 On the implications of recent observations of the inner knot in the Crab nebula. Mon. Not. R. Astron. Soc. 454, 27542769.
Yuan, Y., Nalewajko, K., Zrake, J., East, W. E. & Blandford, R. D. 2016 Kinetic study of radiation-reaction-limited particle acceleration during the relaxation of unstable force-free equilibria. Astrophys. J. 828, 92.
Zrake, J. & Arons, J. 2017 Turbulent magnetic relaxation in pulsar wind nebulae. Astrophys. J. 847, 57.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Plasma Physics
  • ISSN: 0022-3778
  • EISSN: 1469-7807
  • URL: /core/journals/journal-of-plasma-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 11
Total number of PDF views: 111 *
Loading metrics...

Abstract views

Total abstract views: 247 *
Loading metrics...

* Views captured on Cambridge Core between 19th April 2018 - 20th August 2018. This data will be updated every 24 hours.