Skip to main content
×
×
Home

Plasma electron hole oscillatory velocity instability

  • Chuteng Zhou (a1) and Ian H. Hutchinson (a1)
Abstract

In this paper, we report a new type of instability of electron holes (EHs) interacting with passing ions. The nonlinear interaction of EHs and ions is investigated using a new theory of hole kinematics. It is shown that the oscillation in the velocity of the EH parallel to the magnetic field direction becomes unstable when the hole velocity in the ion frame is slower than a few times the cold ion sound speed. This instability leads to the emission of ion-acoustic waves from the solitary hole and decay in its magnitude. The instability mechanism can drive significant perturbations in the ion density. The instability threshold, oscillation frequency and instability growth rate derived from the theory yield quantitative agreement with the observations from a novel high-fidelity hole-tracking particle-in-cell code.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Plasma electron hole oscillatory velocity instability
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Plasma electron hole oscillatory velocity instability
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Plasma electron hole oscillatory velocity instability
      Available formats
      ×
Copyright
Corresponding author
Email address for correspondence: ctzhou@mit.edu
References
Hide All
Bernstein, I., Greene, J. & Kruskal, M. 1957 Exact nonlinear plasma oscillations. Phys. Rev. 108 (4), 546550.
Dokgo, K., Woo, M., Choi, C.-r., Min, K.-w. & Hwang, J. 2016 Generation of coherent ion acoustic solitary waves in inhomogeneous plasmas by an odd eigenmode of electron holes. Phys. Plasmas 092107, 15; http://dx.doi.org/10.1063/1.4962500.
Drake, J. F., Swisdak, M., Cattell, C., Shay, M. A., Rogers, B. N. & Zeiler, A. 2003 Formation of electron holes and particle energization during magnetic reconnection. Science 299 (1987), 873877.
Dupree, T. H. 1983 Growth of phase–space density holes. Phys. Fluids 26 (9), 2460; http://scitation.aip.org/content/aip/journal/pof1/26/9/10.1063/1.864430.
Dyrud, L. P. & Oppenheim, M. M. 2006 Electron holes, ion waves, and anomalous resistivity in space plasmas. J. Geophys. Res. 111 (1), 112.
Eliasson, B. & Shukla, P. K. 2004 Dynamics of electron holes in an electron–oxygen–ion plasma. Phys. Rev. Lett. 93 (4), 045001.
Ergun, R. E., Carlson, C. W., McFadden, J. P., Mozer, F. S., Muschietti, L., Roth, I. & Strangeway, R. J. 1998 Debye-scale plasma structures associated with magnetic-field-aligned electric fields. Phys. Rev. Lett. 81 (4), 826829.
Fox, W., Porkolab, M., Egedal, J., Katz, N. & Le, A. 2008 Laboratory observation of electron phase–space holes during magnetic reconnection. Phys. Rev. Lett. 255003 (December), 14.
Hutchinson, I. H. & Zhou, C. 2016 Plasma electron hole kinematics. I. Momentum conservation. Phys. Plasmas 23 (8), 082101; http://dx.doi.org/10.1063/1.4959870.
Katznelson, Y. 2002 An Introduction to Harmonic Analysis, 3rd edn. Cambridge University Press.
Khotyaintsev, Y. V., Vaivads, A., André, M., Fujimoto, M., Retinò, A. & Owen, C. J. 2010 Observations of slow electron holes at a magnetic reconnection site. Phys. Rev. Lett. 105 (16), 165002.
Lefebvre, B., Chen, L.-J., Gekelman, W., Kintner, P., Pickett, J., Pribyl, P., Vincena, S., Chiang, F. & Judy, J. 2010 Laboratory measurements of electrostatic solitary structures generated by beam injection. Phys. Rev. Lett. 115001 (September), 14.
Luque, A. & Schamel, H. 2005 Electrostatic trapping as a key to the dynamics of plasmas, fluids and other collective systems. Phys. Rep. 415 (5–6), 261359; http://linkinghub.elsevier.com/retrieve/pii/S0370157305002437.
Malaspina, D. M., Newman, D. L., Willson, L. B., Goetz, K., Kellogg, P. J. & Kerstin, K. 2013 Electrostatic solitary waves in the solar wind: evidence for instability at solar wind current sheets. J. Geophys. Res. 118 (2), 591599.
Mozer, F. S., Agapitov, O. A., Artemyev, A., Burch, J. L., Ergun, R. E., Giles, B. L., Mourenas, D., Torbert, R. B., Phan, T. D. & Vasko, I. 2016 Magnetospheric multiscale satellite observations of parallel electron acceleration in magnetic field reconnection by fermi reflection from time domain structures. Phys. Rev. Lett. 116 (April), 145101.
Muschietti, L., Roth, I., Carlson, C. W. & Ergun, R. E. 2000 Transverse instability of magnetized electron holes. Phys. Rev. Lett. 85 (1), 9497.
Newman, D. L., Goldman, M. V., Spector, M. & Perez, F. 2001 Dynamics and instability of electron phase–space tubes. Phys. Rev. Lett. 86 (7), 12391242; http://link.aps.org/doi/10.1103/PhysRevLett.86.1239.
Norgren, C., André, M., Graham, D. B., Khotyaintsev, Y. V. & Vaivads, A. 2015 Slow electron holes in multicomponent plasmas. Geophys. Res. Lett. 42 (18), 72647272.
Nyquist, H. 1932 Regeneration theory. Bell Syst. Technical J. 11 (1), 126147.
Pickett, J., Chen, L., Kahler, S., Santolík, O., Gurnett, D., Tsurutani, B. & Balogh, A. 2004 Isolated electrostatic structures observed throughout the Cluster orbit: relationship to magnetic field strength. Ann. Geophys. 22, 25152523.
Purwins, H.-G., Bödeker, H. & Liehr, A. 2005 Dissipative solitons in reaction-diffusion systems. In Dissipative Solitons, pp. 267308. Springer.
Saeki, K. & Genma, H. 1998 Electron–hole disruption due to ion motion and formation of coupled electron hole and ion–acoustic soliton in a plasma. Phys. Rev. Lett. 80 (6), 12241227.
Schamel, H. 1972 Stationary solitary, snoidal and sinusoidal ion acoustic waves. Plasma Phys. 14, 905924.
Schamel, H. 1986 Electrostatic phase space structures in theory and experiment. Phys. Rep. 3 (3), 161191.
Schamel, H. & Karpman, V. I. 1998 Evolution of Langmuir soliton caused by resonant emission of ion sound wave. Phys. Plasmas 3487, 1013.
Wilson, L. B., Cattell, C. A., Kellogg, P. J., Goetz, K., Kersten, K., Kasper, J. C., Szabo, A. & Wilber, M. 2010 Large-amplitude electrostatic waves observed at a supercritical interplanetary shock. J. Geophys. Res. 115 (12), 114.
Zhou, C. & Hutchinson, I. H. 2016 Plasma electron hole kinematics. II. Hole tracking Particle-In-Cell simulation. Phys. Plasmas 23 (8), 082102; http://scitation.aip.org/content/aip/journal/pop/23/8/10.1063/1.4959871.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Plasma Physics
  • ISSN: 0022-3778
  • EISSN: 1469-7807
  • URL: /core/journals/journal-of-plasma-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

Metrics

Full text views

Total number of HTML views: 24
Total number of PDF views: 177 *
Loading metrics...

Abstract views

Total abstract views: 394 *
Loading metrics...

* Views captured on Cambridge Core between 25th September 2017 - 20th July 2018. This data will be updated every 24 hours.