Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T05:57:35.764Z Has data issue: false hasContentIssue false

Positron clouds within thunderstorms

Published online by Cambridge University Press:  05 June 2015

Joseph R. Dwyer*
Affiliation:
Department of Physics and Space Science Center (EOS), The University of New Hampshire, Durham, NH 03824, USA
David M. Smith
Affiliation:
Physics Department and Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA 95064, USA
Bryna J. Hazelton
Affiliation:
Department of Physics, University of Washington, Seattle, WA 98195, USA
Brian W. Grefenstette
Affiliation:
Space Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125, USA
Nicole A. Kelley
Affiliation:
Space Sciences Laboratory, University of California, Berkeley, CA 94720, USA
Alexander W. Lowell
Affiliation:
Space Sciences Laboratory, University of California, Berkeley, CA 94720, USA
Meagan M. Schaal
Affiliation:
National Academies of Science, resident at the Naval Research Laboratory, Washington, DC 20375
Hamid K. Rassoul
Affiliation:
Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
*
Email address for correspondence: Joseph.Dwyer@unh.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We report the observation of two isolated clouds of positrons inside an active thunderstorm. These observations were made by the Airborne Detector for Energetic Lightning Emissions (ADELE), an array of six gamma-ray detectors, which flew on a Gulfstream V jet aircraft through the top of an active thunderstorm in August 2009. ADELE recorded two 511 keV gamma-ray count rate enhancements, 35 s apart, each lasting approximately 0.2 s. The enhancements, which were approximately a factor of 12 above background, were both accompanied by electrical activity as measured by a flat-plate antenna on the underside of the aircraft. The energy spectra were consistent with a source mostly composed of positron annihilation gamma rays, with a prominent 511 keV line clearly visible in the data. Model fits to the data suggest that the aircraft was briefly immersed in clouds of positrons, more than a kilometre across. It is not clear how the positron clouds were created within the thunderstorm, but it is possible they were caused by the presence of the aircraft in the electrified environment.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

References

REFERENCES

Alexeenko, V. V., Khaerdinov, N. S., Lidvansky, A. S. and Petkov, V. B. 2002 Transient variations of secondary cosmic rays due to atmospheric electric field and evidence for pre-lightning particle acceleration. Phys. Lett. A 301, 299306.Google Scholar
Babich, L. P., Bochkov, E. I., Donskoi, E. N. and Kutsyk, I. M. 2010 Source of prolonged bursts of high-energy gamma rays detected in thunderstorm atmosphere in Japan at the coastal area of the Sea of Japan and on high mountaintop. J. Geophys. Res. 115, A09317.Google Scholar
Babich, L. P., Donskoy, E. N., Il'kaev, R. I., Kutsyk, I. M. and Roussel-Dupré, R. A. 2004 Fundamental parameters of a relativistic runaway electron avalanche in air. Plasma Phys. Rep. 30, 616624.Google Scholar
Babich, L. P., Donskoy, E. N., Kutsyk, I. M. and Roussel-Dupré, R. A. 2005 The feedback mechanism of runaway air breakdown. Geophys. Res. Lett. 32, L09809. doi:10.1029/2004GL021744.Google Scholar
Babich, L. P. and Loĭko, T. V. 2009 Subnanosecond pulses of runaway electrons generated in atmosphere by high-voltage pulses of microsecond duration. Dokl. Phys. 54 (11), 479482.Google Scholar
Babich, L. P. and Roussel-Dupré, R. A. 2007 Origin of neutron flux increases observed in correlation with lightning. J. Geophys. Res. 112, D13303. doi:10.1029/2006JD008340.Google Scholar
Briggs, M. S. et al. 2010 First results on terrestrial gamma ray flashes from the Fermi Gamma-ray Burst Monitor. J. Geophys. Res. 115, A07323. doi:10.1029/2009JA015242.Google Scholar
Briggs, M. S. et al. 2011 Electron-positron beams from terrestrial lightning observed with Fermi GBM. Geophys. Res. Lett. 38 (2), L02808.Google Scholar
Brunetti, M., Cecchini, S., Galli, M., Giovannini, G. and Pagliarin, A. 2000 Gamma-ray bursts of atmospheric origin in the MeV energy range. Geophys. Res. Lett. 27, 15991602.Google Scholar
Carlson, B. E., Gjesteland, T. and Østgaard, N. 2011 Terrestrial gamma-ray flash electron beam geometry, fluence, and detection frequency. J. Geophys. Res. 116, A11217.Google Scholar
Carlson, B. E., Lehtinen, N. G. and Inan, U. S. 2008 Runaway relativistic electron avalanche seeding in the Earth's atmosphere. J. Geophys. Res. 113, A10307.Google Scholar
Carlson, B. E., Lehtinen, N. G. and Inan, U. S. 2010 Neutron production in terrestrial gamma ray flashes. J. Geophys. Res. 115, A00E19.Google Scholar
Chilingarian, A. et al. 2010 Ground-based observations of thunderstorm-correlated fluxes of high-energy electrons, gamma rays, and neutrons, Phys. Rev. D 82 (4), 043009.Google Scholar
Chilingarian, A., Hovsepyan, G. and Kozliner, L. 2013 Thunderstorm ground enhancements: gamma ray differential energy spectra. Phys. Rev. D 88, 073001.Google Scholar
Chilingarian, A., Mailyan, B. and Vanyan, L. 2012 Recovering of the energy spectra of electrons and gamma rays coming from the thunderclouds. Atmos. Res. 114–115, 116.Google Scholar
Chilingarian, A. and Mkrtchyan, H. 2012 Role of the lower positive charge region (LPCR) in initiation of the thunderstorm ground enhancements (TGEs). Phys. Rev. D 86, 072003.Google Scholar
Chubenko, A. P., Antonova, V. P., Kryukov, S. Yu., Piskal, V. V., Ptitsyn, M. O., Shepetov, A. L., Vildanova, L. I., Zybin, K. P. and Gurevich, A. V. 2000 Intense x-ray emission bursts during thunderstorms. Phys. Lett. A 275, 90100.Google Scholar
Chubenko, A. P. et al. 2003 Effective growth of a number of cosmic ray electrons inside thundercloud. Phys. Lett. A 309, 90102.Google Scholar
Chubenko, A. P. et al. 2009 Energy spectrum of lightning gamma emission. Phys. Lett. A 373 (33), 29532958.Google Scholar
Cohen, M. B., Inan, U. S., Said, R. K., Briggs, M. S., Fishman, G. J., Connaughton, V. and Cummer, S. A. 2010 A lightning discharge producing a beam of relativistic electrons into space. Geophys. Res. Lett. 37 (18), L18806.Google Scholar
Connaughton, V. et al. 2010 Associations between Fermi gamma-ray burst monitor terrestrial gamma ray flashes and sferics from the world wide lightning location network. J. Geophys. Res. 115 (A12), A12307.Google Scholar
Connaughton, V. et al. 2013 Radio signals from electron beams in terrestrial gamma-ray flashes. J. Geophys. Res. 118, 23132320.Google Scholar
Cummer, S. A., Lu, G., Briggs, M. S., Connaughton, V., Xiong, S., Fishman, G. J. and Dwyer, J. R. 2011 The lightning-TGF relationship on microsecond timescales. Geophys. Res. Lett. 38, L14810. doi:10.1029/2011GL048099.Google Scholar
Cummer, S. A., Zhai, Y., Hu, W., Smith, D. M., Lopez, L. I. and Stanley, M. A. 2005 Measurements and implications of the relationship between lightning and terrestrial gamma ray flashes. Geophys. Res. Lett. 32, L08811. doi:10.1029/2005GL022778.Google Scholar
Dwyer, J. R. 2003 A fundamental limit on electric fields in air. Geophys. Res. Lett. 30 (20), 2055. doi:10.1029/2003GL017781.Google Scholar
Dwyer, J. R. et al. 2003 Energetic radiation produced during rocket-triggered lightning. Science 299, 694697.Google Scholar
Dwyer, J. R. 2004 Implications of x-ray measurements of lightning. Geophys. Res. Lett. 31, L12102. doi:10.1029/2004GL019795.Google Scholar
Dwyer, J. R. 2007 Relativistic breakdown in planetary atmospheres. Phys. Plasmas 14 (4), 042901.Google Scholar
Dwyer, J. R. 2012 The relativistic feedback discharge model of terrestrial gamma ray flashes. J. Geophys. Res. 117, A02308. doi:10.1029/2011JA017160.Google Scholar
Dwyer, J. R. et al. 2004a Measurements of x-ray emission from rocket-triggered lightning. Geophys. Res. Lett. 31, L05118. doi:10.1029/2003GL018770.Google Scholar
Dwyer, J. R. et al. 2004b A ground level gamma-ray burst observed in association with rocket-triggered lightning. Geophys. Res. Lett. 31, L05119. doi:10.1029/2003GL018771.Google Scholar
Dwyer, J. R. et al. 2005a X-ray bursts associated with leader steps in cloud-to-ground lightning. Geophys. Res. Lett. 32, L01803. doi:10.1029/2004GL021782.Google Scholar
Dwyer, J. R., Grefenstette, B. W. and Smith, D. M. 2008b High-energy electron beams launched into space by thunderstorms. Geophys. Res. Lett. 35, L02815. doi:10.1029/2007GL032430.Google Scholar
Dwyer, J. R., Rassoul, H. K., Saleh, Z., Uman, M. A., Jerauld, J. and Plumer, J. A. 2005b X-ray bursts produced by laboratory sparks in air. Geophys. Res. Lett. 32, L20809. doi:10.1029/2005GL024027.Google Scholar
Dwyer, J. R., Saleh, Z., Rassoul, H. K., Concha, D., Rahman, M., Cooray, V., Jerauld, J., Uman, M. A. and Rakov, V. A. 2008a A study of x-ray emission from laboratory sparks in air at atmospheric pressure. J. Geophys. Res. 113, D23207. doi:10.1029/2008JD010315.Google Scholar
Dwyer, J. R., Schaal, M., Rassoul, H. K., Uman, M. A., Jordan, D. M., Hill, D. and Rassoul, H. K. 2011 High-speed x-ray images of triggered lightning dart leaders. J. Geophys. Res. 116, D20208.Google Scholar
Dwyer, J. R., Schaal, M. M., Cramer, E., Arabshahi, S., Liu, N., Rassoul, H. K., Hill, J. D., Jordan, D. M. and Uman, M. A. 2012a Observation of a gamma-ray flash at ground level in association with a cloud-to-ground lightning return stroke. J. Geophys. Res. 117, A10303.Google Scholar
Dwyer, J. R. and Smith, D. M. 2005 A comparison between Monte Carlo simulations of runaway breakdown and terrestrial gamma-ray flash observations. Geophys. Res. Lett. 32, L22804. doi:10.1029/2005GL023848.Google Scholar
Dwyer, J. R., Smith, D. and Cummer, S. A. 2012 High energy atmospheric physics: terrestrial gamma-ray flashes and related phenomena. Space Sci. Rev., doi:10.1007/s11214-012-9894-0.Google Scholar
Dwyer, J. R., Smith, D. M., Uman, M. A., Saleh, Z., Grefenstette, B., Hazelton, B. and Rassoul, H. K. 2010 Estimation of the fluence of high-energy electron bursts produced by thunderclouds and the resulting radiation doses received in aircraft. J. Geophys. Res. doi:10.1029/2009JD012039.Google Scholar
Dwyer, J. R. and Uman, M. A. 2014 The physics of lightning. Phys. Reports 534 (4), 147241.Google Scholar
Eack, K. B., Beasley, W. H., Rust, W. D., Marshall, T. C. and Stolzenburg, M. 1996a Initial results from simultaneous observation of x rays and electric fields in a thunderstorm. J. Geophys. Res. 101 (D23), 2963729640.Google Scholar
Eack, K. B., Beasley, W. H., Rust, W. D., Marshall, T. C. and Stolzenburg, M. 1996b X-ray pulses observed above a mesoscale convective system. Geophys. Res. Lett. 23 (21), 29152918.Google Scholar
Eack, K. B., Suszcynsky, D. M., Beasley, W. H., Roussel-Dupré, R. and Symbalisty, E. 2000 Gamma-ray emission observed in a thunderstorm anvil. Geophys. Res. Lett. 27, 185188.Google Scholar
Fishman, G. J. et al. 1994 Discovery of intense gamma-ray flashes of atmospheric origin. Science 264, 13131316.Google Scholar
Fishman, G. J. et al. 2011 Temporal properties of the terrestrial gamma-ray flashes from the gamma-ray burst monitor on the Fermi observatory. J. Geophys. Res. 116, A07304. doi:10.1029/2010JA016084.Google Scholar
Gjesteland, T., Østgaard, N., Collier, A. B., Carlson, B. E., Cohen, M. B. and Lehtinen, N. G. 2011 Confining the angular distribution of terrestrial gamma ray flash emission. J. Geophys. Res. 116, A11313. doi:10.1029/2011JA016716.Google Scholar
Gjesteland, T., Østgaard, N., Collier, A. B., Carlson, B. E., Eyles, C. and Smith, D. M. 2012 A new method reveals more TGFs in the RHESSI data. Geophys. Res. Lett. 39, L05102.Google Scholar
Gjesteland, T., Østgaard, N., Connell, P. H., Stadsnes, J. and Fishman, G. J. 2010 Effects of dead time losses on terrestrial gamma ray flash measurements with the burst and transient source experiment. J. Geophys. Res. 115 (3), A00E21.Google Scholar
Grefenstette, B. W., Smith, D. M., Dwyer, J. R. and Fishman, G. J. 2008 Time evolution of terrestrial gamma ray flashes. Geophys. Res. Lett. 35 (6), L06802.Google Scholar
Gurevich, A. V. 1961 On the theory of runaway electrons. Soviet Phys. Jetp 12 (5), 904912.Google Scholar
Gurevich, A. V., Milikh, G. M. and Roussel-Dupré, R. A. 1992 Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm. Phys. Lett. A 165, 463467.Google Scholar
Gurevich, A. V. and Zybin, K. P. 2001 Runaway breakdown and electric discharges in thunderstorms, Phys.-Uspekhi 44, 1119.Google Scholar
Gurevich, A. V. et al. 2011 Laboratory demonstration of runaway electron breakdown of air. Phys. Lett. A 375, 28452849.Google Scholar
Hill, J. D. 2012 The mechanisms of lightning leader propagation and ground attachment. PhD dissertation, University of Florida.Google Scholar
Hill, J. D., Uman, M. A., Jordan, D. M., Dwyer, J. R. and Rassoul, H. 2012 “Chaotic” dart leaders in triggered lightning: electric fields, x-rays, and source locations. J. Geophys. Res. 117, D03118. doi:10.1029/2011JD016737.Google Scholar
Howard, J., Uman, M., Biagi, C., Hill, D., Jerauld, J., Rakov, V. A., Dwyer, J., Saleh, Z. and Rassoul, H. 2010 RF and x-ray source locations during the lightning attachment process. J. Geophys. Res. 115. doi:10.1029/2009JD012055.Google Scholar
Howard, J., Uman, M. A., Dwyer, J. R., Hill, D., Biagi, C., Saleh, Z., Jerauld, J. and Rassoul, H. K. 2008 Co-location of lightning leader x-ray and electric field change sources. Geophys. Res. Lett. 35, L13817. doi:10.1029/2008GL034134.Google Scholar
Kostyrya, I. D., Tarasenko, V. F., Tkachev, A. N. and Yakovlenko, S. I. 2006 X-ray radiation due to nanosecond volume discharges in air under atmospheric pressure. Technol. Phys. 51 (3), 356361.Google Scholar
Lehtinen, N. G., Bell, T. F. and Inan, U. S. 1999 Monte Carlo simulation of runaway MeV electron breakdown with application to red sprites and terrestrial gamma ray flashes. J. Geophys. Res. 104, 2469924712. doi:10.1029/1999JA0900335.Google Scholar
Liu, N. and Dwyer, J. R. 2013 Modeling terrestrial gamma-ray flashes produced by relativistic feedback discharges. J. Geophys. Res. 118, 23592376.Google Scholar
MacGorman, D. R. and Rust, W. D. 1998 The Electrical Nature of Storms. New York: Oxford University Press.Google Scholar
Mallick, S., Rakov, V. A. and Dwyer, J. R. 2012 A study of x-ray emissions from thunderstorms with emphasis on subsequent strokes in natural lightning. J. Geophys. Res. 117. doi:10.1029/2012JD017555.Google Scholar
March, V. and Montanyà, J. 2010 Influence of the voltage-time derivative in x-ray emission from laboratory sparks. Geophys. Res. Lett. 37 (19), L19801.Google Scholar
March, V. and Montanyà, J. 2011 X-rays from laboratory sparks in air: the role of the cathode in the production of runaway electrons. Geophys. Res. Lett. 38, L04803. doi:10.1029/2010GL046540.Google Scholar
March, V., Montanya, J., Romero, D., Sola, G. and Van der Welde, O. 2012 X-rays from laboratory sparks in air: The relationship between runaway electrons and the electric field. In: Int. Conf. Lightning Protection (ICLP), pp. 1–7.Google Scholar
Marisaldi, M. et al. 2010a Detection of terrestrial gamma-ray flashes up to 40-MeV by the AGILE satellite. J. Geophys. Res. 115, A00E13.Google Scholar
Marisaldi, M. et al. 2010b Gamma-ray localization of terrestrial gamma-ray flashes. Phys. Rev. Lett. 105, 128501.Google Scholar
McCarthy, M. and Parks, G. K. 1985 Further observations of x-rays inside thunderstorms. Geophys. Res. Lett. 12, 393396.Google Scholar
Milikh, G. and Roussel-Dupré, R. 2010 Runaway breakdown and electrical discharges in thunderstorms. J. Geophys. Res. doi:10.1029/2009JA014818.Google Scholar
Moore, C. B., Eack, K. B., Aulich, G. D. and Rison, W. 2001 Energetic radiation associated with lightning stepped-leaders. Geophys. Res. Lett. 28, 21412144.Google Scholar
Moss, G. D., Pasko, V. P., Liu, N. and Veronis, G. 2006 Monte Carlo model for analysis of thermal runaway electrons in streamer tips in transient luminous events and streamer zones of lightning leaders. J. Geophys. Res. 111, A02307. doi:10.1029/2005JA011350.Google Scholar
Nguyen, C. V. 2012 Experimental study on hard radiation form long laboratory spark discharges in air. PhD dissertation, Technische Universiteit Eindhoven.Google Scholar
Nguyen, C. V., van Deursen, A. P. J. and Ebert, U. 2008 Multiple x-ray bursts from long discharges in air. J. Phys. D. Appl. Phys. 41, 234012.Google Scholar
Nguyen, C. V., van Deursen, A. P. J., van Heesch, E. J. M., Winands, C. J. J. and Pemen, A. J. M. 2010 X-ray emission in streamer-corona plasma. J. Phys. D., Appl. Phys. 43, 025202, 1–5. doi:10.10880022-3727/43/2/025202.Google Scholar
Østgaard, N., Gjesteland, T., Hansen, R. S., Collier, A. B. and Carlson, B. 2012 The true fluence distribution of terrestrial gamma flashes at satellite altitude. J. Geophys. Res. 117, A03327, 1–8. doi:10.1029/2011JA017365.Google Scholar
Parks, G. K., Mauk, B. H., Spiger, R. and Chin, J. 1981 X-ray enhancements detected during thunderstorm and lightning activities. Geophys. Res. Lett. 8, 11761179.Google Scholar
Rahman, M., Cooray, V., Ahmad, N. A., Nyberg, J., Rakov, V. A. and Sharma, S. 2008 X-rays from 80 cm long sparks in air. Geophys. Res. Lett. 35, L06805. doi:10.1029/2007GL032678.Google Scholar
Rakov, V. A. and Uman, M. A. 2003 Lightning: Physics and Effects. Cambridge, UK: Cambridge University Press, p. 687; paperback edition pp. 116–121, 331–337.Google Scholar
Rep'ev, A. G. and Repin, P. B. 2008 Spatiotemporal parameters of the x-ray radiation from a diffuse atmospheric-pressure discharge. Technol. Phys. 53 (1), 7380.Google Scholar
Roussel-Dupré, R., Colman, J. J., Symbalisty, E., Sentman, D. and Pasko, V. P. 2008 Physical processes related to discharges in planetary atmospheres. Space Sci. Rev. 137, 5182.Google Scholar
Roussel-Dupré, R. and Gurevich, A. V. 1996 On runaway breakdown and upward propagating discharges. J. Geophys. Res. 101 (A2), 22972312.Google Scholar
Saleh, Z. et al. 2009 Properties of the x-ray emission from rocket-triggered lightning as measured by the thunderstorm energetic radiation array (TERA). J. Geophys. Res. 114 (D17). doi:10.1029/2008JD011618.Google Scholar
Schaal, M. M., Dwyer, J. R., Rassoul, H. K., Hill, J. D., Jordan, D. M. and Uman, M. A. 2013 The angular distribution of energetic electron and X-ray emissions from triggered lightning leaders. J. Geophys. Res. 118. doi:10.1002/2013JD019619.Google Scholar
Schaal, M. M., Dwyer, J. R., Saleh, Z. H., Rassoul, H. K., Uman, M. A., Hill, J. D., Jordan, D. M. 2012 Spatial and energy distributions of X-ray emissions from leaders in natural and rocket triggered lightning. J. Geophys. Res. 117, D15201. doi:10.1029/2012JD017897.Google Scholar
Schaal, M. M. et al. 2014 The structure of x-ray emissions from triggered lightning leaders measured by a pinhole-type x-ray camera. J. Geophys. Res. 119. doi:10.1002/2013JD020266.Google Scholar
Skeltved, A. B., Østgaard, N., Carlson, B., Gjesteland, T. and Celestin, S. 2014 Modeling the relativistic runaway electron avalanche and the feedback mechanism with GEANT4. J. Geophys. Res. 119, 91749191.Google Scholar
Smith, D. M., Lopez, L. I., Lin, R. P. and Barrington-Leigh, C. P. 2005 Terrestrial gamma-ray flashes observed up to 20 MeV. Science 307, 10851088.Google Scholar
Smith, D. M. et al. 2011a The rarity of terrestrial gamma-ray flashes. Geophys. Res. Lett. 38, L08807. doi:10.1029/2011GL046875.Google Scholar
Smith, D. M. et al. 2011b A terrestrial gamma-ray flash observed from an aircraft. J. Geophys. Res. 116, D20124. doi:10.1029/2011JD016252.Google Scholar
Suszcynsky, D. M., Roussel-Dupré, R. and Shaw, G. 1996 Ground-based search for x rays generated by thunderstorms and lightning. J. Geophys. Res. 101, 23505.Google Scholar
Tavani, M. et al. 2011 Terrestrial gamma-ray flashes as powerful particle accelerators. Phys. Rev. Lett. 106 (1), 018501.Google Scholar
Torii, T., Nishijima, T., Kawasaki, Z.-I. and Sugita, T. 2004 Downward emission of runaway electrons and bremsstrahlung photons in thunderstorm electric fields. Geophys. Res. Lett. 31, L05113.Google Scholar
Torii, T., Sugita, T., Kamogawa, M., Watanabe, Y. and Kusunoki, K. 2011 Migrating source of energetic radiation generated by thunderstorm activity. Geophys. Res. Lett. 38, L24801. doi:10.1029/2011GL049731.Google Scholar
Torii, T., Sugita, T., Tanabe, S., Kimura, Y., Kamogawa, M., Yajima, K. and Yasuda, H. 2009 Gradual increase of energetic radiation associated with thunderstorm activity at the top of Mt. Fuji. Geophys. Res. Lett. 36, L13804.Google Scholar
Torii, T., Takeishi, M. and Hosono, T. 2002 Observation of gamma-ray dose increase associated with winter thunderstorm and lightning activity. J. Geophys. Res. 107, 4324.Google Scholar
Tsuchiya, H. et al. 2007 Detection of high-energy gamma rays from winter thunderclouds. Phys. Rev. Lett. 99, 165002.Google Scholar
Tsuchiya, H. et al. 2009 Observation of an energetic radiation burst from mountain-top thunderclouds. Phys. Rev. Lett. 102, 255003.Google Scholar
Tsuchiya, H. et al. 2011 Long-duration γ ray emissions from 2007 and 2008 winter thunderstorms. J. Geophys. Res. 116, D09113.Google Scholar
Wilson, C. T. R. 1925 The electric field of a thunderstorm and some of its effects. Proc. Phys. Soc. Lond. 37, 32D–37D.Google Scholar
Yoshida, S., Morimoto, T., Ushio, T., Kawasaki, Z.-I., Torii, T., Wang, D., Takagi, N. and Watanabe, T. 2008 High energy photon and electron bursts associated with upward lightning strokes. Geophys. Res. Lett. 37, L10804.Google Scholar