Skip to main content
×
×
Home

Signatures of quantum effects on radiation reaction in laser–electron-beam collisions

  • C. P. Ridgers (a1), T. G. Blackburn (a2), D. Del Sorbo (a1), L. E. Bradley (a1), C. Slade-Lowther (a1), C. D. Baird (a1), S. P. D. Mangles (a3), P. McKenna (a4), M. Marklund (a2), C. D. Murphy (a1) and A. G. R. Thomas (a5) (a6) (a7)...
Abstract

Two signatures of quantum effects on radiation reaction in the collision of a ${\sim}$ GeV electron beam with a high intensity ( ${>}3\times 10^{20}~\text{W}~\text{cm}^{-2}$ ) laser pulse have been considered. We show that the decrease in the average energy of the electron beam may be used to measure the Gaunt factor $g$ for synchrotron emission. We derive an equation for the evolution of the variance in the energy of the electron beam in the quantum regime, i.e. quantum efficiency parameter $\unicode[STIX]{x1D702}\not \ll 1$ . We show that the evolution of the variance may be used as a direct measure of the quantum stochasticity of the radiation reaction and determine the parameter regime where this is observable. For example, stochastic emission results in a 25 % increase in the standard deviation of the energy spectrum of a GeV electron beam, 1 fs after it collides with a laser pulse of intensity $10^{21}~\text{W}~\text{cm}^{-2}$ . This effect should therefore be measurable using current high-intensity laser systems.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Signatures of quantum effects on radiation reaction in laser–electron-beam collisions
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Signatures of quantum effects on radiation reaction in laser–electron-beam collisions
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Signatures of quantum effects on radiation reaction in laser–electron-beam collisions
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Email address for correspondence: christopher.ridgers@york.ac.uk
References
Hide All
Andersen, K. K., Esberg, J., Knudsen, H., Thomsen, H. D., Uggerhøj, U. I., Sona, P., Mangiarotti, A., Ketel, T. J., Dizdar, A. & Ballestrero, S. 2012 Experimental investigations of synchrotron radiation at the onset of the quantum regime. Phys. Rev. D 86, 072001.
Arber, T. D., Bennett, K., Brady, C. S., Lawrence-Douglas, A., Ramsay, M. G., Sircombe, N. J., Gillies, P., Evans, R. G., Schmitz, H., Bell, A. R. et al. 2015 Contemporary particle-in-cell approach to laser–plasma modelling. Plasma Phys. Control. Fusion 57, 113001.
Baĭer, V. N. & Katkov, V. M. 1968 Quasiclassical theory of bremsstrahlung by relativistic particles. Sov. Phys. JETP 26, 807813.
Baier, V. N., Katkov, V. M. & Strakhovenko, V. M. 1991 Quasiclassical theory of radiation and pair creation in crystals at high energy. Rad. Eff. 527, 122123.
Bashinov, A. V. & Kim, A. V. 2013 On the electrodynamic model of ultra-relativistic laser–plasma interactions caused by radiation reaction effects. Phys. Plasmas 20 (11), 113111.
Bell, A. R. & Kirk, J. G. 2008 Possibility of prolific pair production with high-power lasers. Phys. Rev. Lett. 101, 200403.
Blackburn, T. G. 2015 Measuring quantum radiation reaction in laser–electron-beam collisions. Plasma Phys. Control. Fusion 57 (7), 075012.
Blackburn, T. G., Ridgers, C. P., Kirk, J. G. & Bell, A. R. 2014 Quantum radiation reaction in laser–electron-beam collisions. Phys. Rev. Lett. 112, 015001.
Brady, C. S., Ridgers, C. P., Arber, T. D., Bell, A. R. & Kirk, J. G. 2012 Laser absorption in relativistically underdense plasmas by synchrotron radiation. Phys. Rev. Lett. 109, 245006.
Bula, C., McDonald, K. T., Prebys, E. J., Bamber, C., Boege, S., Kotseroglou, T., Melissinos, A. C., Meyerhofer, D. D., Ragg, W., Burke, D. L. et al. 1996 Observation of nonlinear effects in compton scattering. Phys. Rev. Lett. 76, 31163119.
Bulanov, S. S., Chen, M., Schroeder, C. B., Esarey, E., Leemans, W. P., Bulanov, S. V., Esirkepov, T. Zh., Kando, M., Koga, J. K., Zhidkov, A. G. et al. 2012 On the design of experiments to study extreme field limits high-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. AIP Conf. Proc. 1507, 825.
Burke, D. L., Field, R. C., Horton-Smith, G., Spencer, J. E., Walz, D., Berridge, S. C., Bugg, W. M., Shmakov, K., Weidemann, A. W., Bula, C. et al. 1997 Positron production in multiphoton light-by-light scattering. Phys. Rev. Lett. 79, 16261629.
DiPiazza, A. 2008 Exact solution of the Landau–Lifshitz equation in a plane wave. Lett. Math. Phys. 83, 305.
Di Piazza, A., Hatsagortsyan, K. Z. & Keitel, C. H. 2010 Quantum radiation reaction effects in multiphoton compton scattering. Phys. Rev. Lett. 105, 220403.
Dinu, V., Harvey, C., Ilderton, A., Marklund, M. & Torgrimsson, G. 2016 Quantum radiation reaction: from interference to incoherence. Phys. Rev. Lett. 116, 044801.
Duclous, R., Kirk, J. G. & Bell, A. R. 2011 Energy straggling and radiation reaction for magnetic bremsstrahlung. Plasma Phys. Control. Fusion 53, 015009.
Elkina, N. V., Fedotov, A. M., Kostyukov, I. Y., Legkov, M. V., Narozhny, N. B., Nerush, E. N. & Ruhl, H. 2011 Qed cascades induced by circularly polarized laser fields. Phys. Rev. ST Accel. Beams 14, 054401.
Erber, T. 1966 High-energy electromagnetic conversion processes in intense magnetic fields. Rev. Mod. Phys. 38, 626659.
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J. P., Burgy, F. & Malka, V. 2004 A laser–plasma accelerator producing monoenergetic electron beams. Nature 431, 541544.
Furry, W. H. 1951 On bound states and scattering in positron theory. Phys. Rev. 81, 115124.
Geddes, C. G. R., Toth, Cs., van Tilborg, J., Esarey, E., Schroeder, C. B., Bruhwiler, D., Nieter, C., Cary, J. & Leemans, W. P. 2004 High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538541.
Gonoskov, A., Bastrakov, S., Efimenko, E., Ilderton, A., Marklund, M., Meyerov, I., Muraviev, A., Sergeev, A., Surmin, I. & Wallin, E. 2015 Extended particle-in-cell schemes for physics in ultrastrong laser fields: review and developments. Phys. Rev. E 92, 023305.
Harvey, C. N., Gonoskov, A., Ilderton, A. & Marklund, M. 2017 Quantum quenching of radiation losses in short laser pulses. Phys. Rev. Lett. 118, 105004.
Heisenberg, W. & Euler, H. 1936 Consequences of dirac theory of the positron. Z. Phys. 98, 714.
Ilderton, A. & Torgrimsson, G. 2013 Radiation reaction in strong-field qed. Phys. Lett. B 725, 481.
Kirk, J. G., Bell, A. R. & Arka, I. 2009 Pair production in counter-propagating laser beams. Plasma Phys. Control. Fusion 52, 085008.
Krivitskii, V. & Tsytovich, V. 1991 Average radiation–reaction force in quantum electrodynamics. Sov. Phys. Uspekhi 34 (3), 250258; cited by 28.
Landau, L. D. & Lifshitz, E. M. 1987 The Classical Theory of Fields, The Course of Theoretical Physics, vol. 2. Butterworth-Heinemann.
Leemans, W. P., Gonsalves, A. J., Mao, H.-S., Nakamura, K., Benedetti, C., Schroeder, C. B., Tóth, C., Daniels, J., Mittelberger, D. E., Bulanov, S. S. et al. 2014 Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. Phys. Rev. Lett. 113, 245002.
Mangles, S., Murphy, C. D., Najmudin, Z., Thomas, A. G. R., Collier, J. L., Dangor, A. E., Divall, E. J., Foster, P. S., Gallacher, J. G., Hooker, C. J. et al. 2004 Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nature 431, 535538.
Neitz, N. & Di Piazza, A. 2013 Stochasticity effects in quantum radiation reaction. Phys. Rev. Lett. 111, 054802.
Ridgers, C. P., Kirk, J. G., Duclous, R., Blackburn, T. G., Brady, C. S., Bennett, K., Arber, T. D. & Bell, A. R. 2014 Pair production in counter-propagating laser beams. J. Comput. Phys. 260, 273.
Ritus, V. I. 1985 Quantum effects of the interaction of elementary particles with an intense electromagnetic field. J. Russ. Laser Res. 6, 497.
Sarri, G., Corvan, D. J., Schumaker, W., Cole, J. M., Di Piazza, A., Ahmed, H., Harvey, C., Keitel, C. H., Krushelnick, K., Mangles, S. P. D. et al. 2014 Ultrahigh brilliance multi-mev -ray beams from nonlinear relativistic thomson scattering. Phys. Rev. Lett. 113, 224801.
Shen, C. S. & White, D. 1972 Energy straggling and radiation reaction for magnetic bremsstrahlung. Phys. Rev. Lett. 28, 455.
Sokolov, A. A. & Ternov, I. M. 1968 Synchrotron Radiation. Akademie-Verlag.
Sokolov, I. V., Naumova, N. M., Nees, J. A. & Mourou, G. A. 2010 Pair creation in qed-strong pulsed laser fields interacting with electron beams. Phys. Rev. Lett. 105, 195005.
Tajima, T. & Dawson, J. M. 1979 Laser electron accelerator. Phys. Rev. Lett. 43, 267270.
Thomas, A. G. R., Ridgers, C. P., Bulanov, S. S., Griffin, B. J. & Mangles, S. P. D. 2012 Strong radiation-damping effects in a gamma-ray source generated by the interaction of a high-intensity laser with a wakefield-accelerated electron beam. Phys. Rev. X 2, 041004.
Vranic, M., Grismayer, T., Fonseca, R. A. & Silva, L. O. 2015 Quantum radiation reaction in head-on laser-electron beam interaction. New J. Phys. 18, 073035.
Vranic, M., Martins, J. L., Vieira, J., Fonseca, R. A. & Silva, L. O. 2014 All-optical radiation reaction at . Phys. Rev. Lett. 113, 134801.
Wang, H. Y., Yan, X. Q. & Zepf, M. 2015 Signatures of quantum radiation reaction in laser–electron-beam collisions. Phys. Plasmas 22 (9), 093103.
Zhang, P., Ridgers, C. P. & Thomas, A. G. R. 2015 The effect of nonlinear quantum electrodynamics on relativistic transparency and laser absorption in ultra-relativistic plasmas. New J. Phys. 27, 043051.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Plasma Physics
  • ISSN: 0022-3778
  • EISSN: 1469-7807
  • URL: /core/journals/journal-of-plasma-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

Metrics

Full text views

Total number of HTML views: 41
Total number of PDF views: 352 *
Loading metrics...

Abstract views

Total abstract views: 802 *
Loading metrics...

* Views captured on Cambridge Core between 11th September 2017 - 19th August 2018. This data will be updated every 24 hours.