Skip to main content

Simulations of efficient laser wakefield accelerators from 1 to 100GeV

  • M. TZOUFRAS (a1), C. HUANG (a2), J. H. COOLEY (a2), F. S. TSUNG (a3), J. VIEIRA (a4) and W. B. MORI (a1) (a3)...

Optimization of laser wakefield acceleration involves understanding and control of the laser evolution in tenuous plasmas, the response of the plasma medium, and its effect on the accelerating particles. We explore these phenomena in the weakly nonlinear regime, in which the laser power is similar to the critical power for self-focusing. Using Particle-In-Cell simulations with the code QuickPIC, we demonstrate that a laser pulse can remain focused in a plasma channel for hundreds of Rayleigh lengths and efficiently accelerate a high-quality electron beam to 100GeV (25GeV) in a single stage with average gradient 3.6GV/m (7.2GV/m).

Hide All
Decker C. D., Mori W. B., Tzeng K.-C. and Katsouleas T. 1996 The evolution of ultra-intense, short-pulse lasers in underdense plasmas. Phys Plasmas 3 (5), 20472056.
Esarey E., Sprangle P., Krall J. and Ting A. 1996 Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24 (2), 252288.
Esarey E., Sprangle P., Krall J. and Ting A. 1997 Self-focusing and guiding of short laser pulses in ionizing gases and plasmas. IEEE J. Quantum Electron. 33 (11), 18791914.
Faure J., Glinec Y., Pukhov A., Kiselev S., Gordienko S., Lefebvre E., Rousseau J. P., Burgy F. and Malka V. 2004 A laser-plasma accelerator producing monoenergetic electron beams. Nature 431 (7008), 541544.
Faure J., Rechatin C., Norlin A., Lifschitz A., Glinec Y. and Malka V. 2006 Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444 (7120), 737739.
Fonseca R. A., Martins S. F., Silva L. O., Tonge J. W., Tsung F. S. and Mori W. B. 2008 One-to-one direct modeling of experiments and astrophysical scenarios: pushing the envelope on kinetic plasma simulations. Plasma Phys. Control. Fusion 50 (12), 124034.
Fonseca R. A., Silva L. O., Tsung F. S., Decyk V. K., Lu W., Ren C., Mori W. B., Deng S., Lee S., Katsouleas T., et al. 2002 Osiris: a three-dimensional, fully relativistic particle in cell code for modeling plasma-based accelerators. In: Proceedings of International Conference on Computational Science – ICCS 2002, Amsterdam, The Netherlands, April 21–24, 2002, Part III (eds. Sloot P. M. A., Tan C. J. K., Dongarra J. and Hoekstra A. G.), Lecture Notes in Computer Science, vol. 2331. Springer, Berlin, Germany, pp. 342351.
Geddes C. G. R., Toth C., van Tilborg J., Esarey E., Schroeder C. B., Bruhwiler D., Nieter C., Cary J. and Leemans W. P. 2004 High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431 (7008), 538541.
Gordon D. F., Hafizi B., Hubbard R. F., Peñano J. R., Sprangle P. and Ting A. 2003 Asymmetric self-phase modulation and compression of short laser pulses in plasma channels. Phys. Rev. Lett. 90 (21), 215001.
Huang C., Decyk V. K., Ren C., Zhou M., Lu W., Mori W. B., Cooley J. H., Antonsen T. M. Jr. and Katsouleas T. 2006 Quickpic: a highly efficient particle-in-cell code for modeling wakefield acceleration in plasmas. J. Comput. Phys. 217 (2), 658679.
Kalmykov S. Y., Yi S. A., Beck A., Lifschitz A. F., Davoine X., Lefebvre E., Khudik V., Shvets G. and Downer M. C. 2011 Dark-current-free petawatt laser-driven wakefield accelerator based on electron self-injection into an expanding plasma bubble. Plasma Phys. Control. Fusion 53 (1), 014006.
Lu W., Huang C., Zhou M., Mori W. B. and Katsouleas T. 2006a Nonlinear theory for relativistic plasma wakefields in the blowout regime. Phys. Rev. Lett. 96 (16), 165002.
Lu W., Huang C., Zhou M., Tzoufras M., Tsung F. S., Mori W. B. and Katsouleas T. 2006b A nonlinear theory for multidimensional relativistic plasma wave wakefields. Phys. Plasmas 13 (5), 056709.
Lu W., Tzoufras M., Joshi C., Tsung F. S., Mori W. B., Vieira J., Fonseca R. A. and Silva L. O. 2007 Generating multi-gev electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Phys. Rev. ST Accel. Beams 10 (6), 061301.
Mangles S. P. D., Murphy C. D., Najmudin Z., Thomas A. G. R., Collier J. L., Dangor A. E., Divall E. J., Foster P. S., Gallacher J. G., Hooker C. J., et al. 2004 Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature 431 (7008), 535538.
Martins S. F., Fonseca R. A., Lu W., Mori W. B. and Silva L. O. 2010 Exploring laser-wakefield-accelerator regimes for near-term lasers using particle-in-cell simulation in lorentz-boosted frames. Nat. Phys. 6 (4), 311316.
Michel P., Schroeder C. B., Shadwick B. A., Esarey E. and Leemans W. P. 2006 Radiative damping and electron beam dynamics in plasma-based accelerators. Phys. Rev. E 74 (2), 026501.
Mora P. and Antonsen T. M. Jr. 1997 Kinetic modeling of intense, short laser pulses propagating in tenuous plasmas. Phys. Plasmas 4 (1), 217229.
Mori W. B. 1997 The physics of the nonlinear optics of plasmas at relativistic intensities. IEEE J. Quantum Electron. 33 (11), 19421953.
Pak A., Marsh K. A., Martins S. F., Lu W., Mori W. B. and Joshi C. 2010 Injection and trapping of tunnel-ionized electrons into laser-produced wakes. Phys. Rev. Lett. 104 (2), 025003.
Pollock B. B., Clayton C. E., Ralph J. E., Albert F., Davidson A., Divol L., Filip C., Glenzer S. H., Herpoldt K., Lu W., et al. 2011 Demonstration of a narrow energy spread, ~0.5gev electron beam from a two-stage laser wakefield accelerator. Phys. Rev. Lett. 107 (4), 045001.
Pukhov A. and Gordienko S. 2006 Bubble regime of wake field acceleration: similarity theory and optimal scalings. Phil. Trans. R. Soc. A 364 (1840), 623633.
Rechatin C., Faure J., Davoine X., Lundh O., Lim J., Ben-Ismaïl A., Burgy F., Tafzi A., Lifschitz A., Lefebvre E., et al. 2010 Characterization of the beam loading effects in a laser plasma accelerator. New J. Phys. 12 (4), 045023.
Sprangle P., Esarey E. and Ting A. 1990 Nonlinear interaction of intense laser pulses in plasmas. Phys. Rev. A 41 (8), 44634469.
Tajima T. and Dawson J. M. 1979 Laser electron accelerator. Phys. Rev. Lett. 43 (4), 267270.
Tsung F. S., Lu W., Tzoufras M., Mori W. B., Joshi C., Vieira J. M., Silva L. O. and Fonseca R. A. 2006 Simulation of monoenergetic electron generation via laser wakefield accelerators for 5-25 tw lasers. Phys. Plasmas 13 (5), 056708.
Tzoufras M. 2008 Generation of Multi-Giga-Electron-Volt Monoenergetic Electron Beams via Laser Wakefield Acceleration, ProQuest, UMI Dissertation, Ann Arbor, MI.
Tzoufras M., Lu W., Tsung F. S., Huang C., Mori W. B., Katsouleas T., Vieira J., Fonseca R. A. and Silva L. O. 2008 Beam loading in the nonlinear regime of plasma-based acceleration. Phys. Rev. Lett. 101 (14), 145002.
Tzoufras M., Lu W., Tsung F. S., Huang C., Mori W. B., Katsouleas T., Vieira J., Fonseca R. A. and Silva L. O. 2009 Beam loading by electrons in nonlinear plasma wakes. Phys. Plasmas 16 (5), 056705.
Vieira J., Fiuza F., Fonseca R. A., Silva L. O., Huang C. K., Lu W., Tzoufras M., Tsung F. S., Decyk V., Mori W. B., et al. 2008 One-to-one full-scale simulations of laser-wakefield acceleration using quickpic. IEEE Trans. Plasma Sci. 36 (4), 17221727.
Vieira J., Fiúza F., Silva L. O., Tzoufras M. and Mori W. B. 2010 Onset of self-steepening of intense laser pulses in plasmas. New J. Phys. 12 (4), 045025.
Vieira J., Martins S. F., Pathak V. B., Fonseca R. A., Mori W. B. and Silva L. O. 2011 Magnetic control of particle injection in plasma based accelerators. Phys. Rev. Lett. 106, 225001.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Plasma Physics
  • ISSN: 0022-3778
  • EISSN: 1469-7807
  • URL: /core/journals/journal-of-plasma-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 24 *
Loading metrics...

Abstract views

Total abstract views: 98 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st November 2017. This data will be updated every 24 hours.