Skip to main content

Solar wind collisional heating

  • Oreste Pezzi

To properly describe heating in weakly collisional turbulent plasmas such as the solar wind, interparticle collisions should be taken into account. Collisions can convert ordered energy into heat by means of irreversible relaxation towards the thermal equilibrium. Recently, Pezzi et al. (Phys. Rev. Lett., vol. 116, 2016a, 145001) showed that the plasma collisionality is enhanced by the presence of fine structures in velocity space. Here, the analysis is extended by directly comparing the effects of the fully nonlinear Landau operator and a linearized Landau operator. By focusing on the relaxation towards the equilibrium of an out of equilibrium distribution function in a homogeneous force-free plasma, here it is pointed out that it is significant to retain nonlinearities in the collisional operator to quantify the importance of collisional effects. Although the presence of several characteristic times associated with the dissipation of different phase space structures is recovered in both the cases of the nonlinear and the linearized operators, the influence of these times is different in the two cases. In the linearized operator case, the recovered characteristic times are systematically larger than in the fully nonlinear operator case, this suggesting that fine velocity structures are dissipated more slowly if nonlinearities are neglected in the collisional operator.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Solar wind collisional heating
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Solar wind collisional heating
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Solar wind collisional heating
      Available formats
Corresponding author
Email address for correspondence:
Hide All
Akhiezer, A. I., Akhiezer, I. A., Polovin, R. V., Sitenko, A. G. & Stepanov, K. N. 1986 Plasma Electrodynamics, vol. 1. Pergamon.
Alexandrova, O., Carbone, V., Veltri, P. & Sorriso-Valvo, L. 2008 Small-scale energy cascade of the solar wind turbulence. Astrophys. J. 674, 1153.
Anderegg, F., Driscoll, C. F., Dubin, D. H. E. & ONeil, T. M. 2009a Measurement of correlation-enhanced collision rates. Phys. Rev. Lett. 102 (9), 095001.
Anderegg, F., Driscoll, C. F., Dubin, D. H. E., ONeil, T. M. & Valentini, F. 2009b Electron acoustic waves in pure ion plasmas a. Phys. Plasmas 16 (5), 055705.
Anderson, M. W. & O’Neil, T. M. 2007a Eigenfunctions and eigenvalues of the Dougherty collision operator. Phys. Plasmas 14, 052103.
Anderson, M. W. & O’Neil, T. M. 2007b Collisional damping of plasma waves on a pure electron plasma column. Phys. Plasmas 14, 112110.
Balescu, R. 1960 Irreversible processes in ionized gases. Phys. Fluids 3 (1), 5263.
Banón Navarro, A., Teaca, B., Told, D., Groselj, D., Crandall, P. & Jenko, F. 2016 Structure of plasma heating in gyrokinetic alfvénic turbulence. Phys. Rev. Lett. 117, 245101.
Belmont, G., Mottez, F., Chust, T. & Hess, S. 2008 Existence of non-Landau solutions for Langmuir waves. Phys. Plasmas 15 (5), 052310.
Bernstein, I. B., Greene, J. M. & Kruskal, M. D. 1957 Exact nonlinear plasma oscillations. Phys. Rev. 108 (3), 546.
Bhatnagar, P. L., Gross, E. P. & Krook, M. 1954 A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511525.
Bobylev, A. V. & Potapenko, I. F. 2013 Monte Carlo methods and their analysis for Coulomb collisions in multicomponent plasmas. J. Comput. Phys. 246, 123144.
Bruno, R. & Carbone, V. 2013 The solar wind as a turbulence laboratory. Living Rev. Sol. Phys. 10, 1208.
Camporeale, E. & Burgess, D. 2011 The dissipation of solar wind turbulent fluctuations at electron scales. Astrophys. J. 730, 114.
Chandrasekhar, S. 1956 On force-free magnetic fields. Proc. Natl Acad. Sci. 42, 273.
Chapman, S. & Ferraro, V. C. A. 1930 A new theory of magnetic storms. Nature 126 (3169), 129130.
Chapman, S. & Ferraro, V. C. A. 1931 A new theory of magnetic storms. Terrestrial Magn. Atmos. Electricity 36 (2), 7797.
Chust, T., Belmont, G., Mottez, F. & Hess, S. 2009 Landau and non-Landau linear damping: physics of the dissipation. Phys. Plasmas 16 (9), 092104.
Cranmer, S. R., Matthaeus, W. H., Breech, B. A. & Kasper, J. C. 2009 Empirical constraints on proton and electron heating in the fast solar wind. Astrophys. J. 702, 1604.
Curtis, L. J., Berry, H. G. & Bromander, J. 1970 Analysis of multi-exponential decay curves. Phys. Scr. 2 (4–5), 216.
Daughton, W., Roytershteyn, V., Albright, B. J., Karimabadi, H., Yin, L. & Bowers, K. J. 2009 Transition from collisional to kinetic regimes in large-scale reconnection layers. Phys. Rev. Lett. 103 (6), 065004.
Dobrowolny, M., Mangeney, A. & Veltri, P. 1980a Fully developed anisotropic hydromagnetic turbulence in interplanetary space. Phys. Rev. Lett. 45, 144.
Dobrowolny, M., Mangeney, A. & Veltri, P. 1980b Properties of magnetohydrodynamic turbulence in the solar wind. In Solar and Interplanetary Dynamics. Springer.
Dougherty, J. K. 1964 Model Fokker–Planck equation for a plasma and its solution. Phys. Fluids 7, 113133.
Dougherty, J. K. & Watson, S. R. 1967 Model Fokker-Planck equations: part 2. The equation for a multicomponent plasma. J. Plasma Phys. 1, 317326.
Elsässer, W. M. 1950 The hydromagnetic equations. Phys. Rev. 79, 183.
Escande, D. F., Elskens, Y. & Doveil, F. 2015 Uniform derivation of Coulomb collisional transport thanks to Debye shielding. J. Plasma Phys. 81 (1), 305810101.
Filbet, F. & Pareschi, L. 2002 A numerical method for the accurate solution of the Fokker–Planck–Landau equation in the nonhomogeneous case. J. Comput. Phys. 179, 126.
Franci, L., Verdini, A., Matteini, L., Landi, S. & Hellinger, P. 2015 Solar wind turbulence from MHD to sub-ion scales: high resolution hybrid simulations. Astrophys. J. Lett. 804, L39.
Frisch, U. P. 1995 Turbulence: the Legacy of A.N. Kolmogorov. Cambridge University Press.
Gary, S. P. 1993 Theory of Space Plasma Microinstabilities. Cambridge University Press.
Gary, S. P., Saito, S. & Narita, Y. 2010 Whistler turbulence wavevector anisotropies: particle-in-cell simulations. Astrophys. J. 716, 1332.
Goldstein, B. E., Neugebauer, M., Phillips, J. L., Bame, S., Gosling, J. T., McComas, D., Wang, Y. M., Sheeley, N. R. & Suess, S. T. 1996 Ulysses plasma parameters: latitudinal, radial and temporal variations. Astron. Astrophys. 316, 296.
Greco, A., Valentini, F., Servidio, S. & Matthaeus, W. H. 2012 Inhomogeneous kinetic effects related to intermittent magnetic discontinuities. Phys. Rev. E 86, 066405.
He, J., Tu, C., Marsch, E., Chen, C. H. K., Wang, L., Pei, Z., Zhang, L., Salem, C. S. & Bale, S. D. 2015 Proton heating in solar wind compressible turbulence with collisions between counter-propagating waves. Astrophys. J. Lett. 83, L30.
Hernandez, R. & Marsch, E. 1985 Collisional time scales for temperature and velocity exchange between drifting Maxwellians. J. Geophys. Res. 90 (A11), 1106211066.
Hirvijoki, E., Lingam, M., Pfefferlé, D., Comisso, L., Candy, J. & Bhattacharjee, A. 2016 Fluid moments of the nonlinear Landau collision operator. Phys. Plasmas 23, 080701.
Holloway, J. P. & Dorning, J. J. 1991 Undamped plasma waves. Phys. Rev. A 44 (6), 3856.
Howes, G. G. & Nielson, K. D. 2013 Alfvén wave collisions, the fundamental building block of plasma turbulence. I. Asymptotic solution. Phys. Plasmas 20, 072302.
Iroshnikov, R. S. 1964 Turbulence of a conducting fluid in a strong magnetic field. Sov. Astron. 7, 566.
Johnston, T. W., Tyshetskiy, Y., Ghizzo, A. & Bertrand, P. 2009 Persistent subplasma-frequency kinetic electrostatic electron nonlinear waves. Phys. Plasmas 16 (4), 042105.
Kabantsev, A. A., Valentini, F. & Driscoll, C. F. 2006 Experimental investigation of electron-acoustic waves in electron plasmas. Non-Neutral Plasma Phys. VI 862, 1318.
Kasper, J. C., Lazarus, A. J. & Gary, S. P. 2008 Wind/SWE observations of firehose constraint on solar wind proton temperature anisotropy. Geophys. Res. Lett. 29, 20.
Kraichnan, R. H. 1965 Inertialrange spectrum of hydromagnetic turbulence. Phys. Fluids 8, 13851387.
Landau, L. D. 1936 The transport equation in the case of the coulomb interaction. In Collected papers of L. D. Landau, pp. 163170. Pergamon.
Lenard, A. 1960 On Bogoliubov’s kinetic equation for a spatially homogeneous plasma. Ann. Phys. 10 (3), 390.
Lesur, M., Diamond, P. H. & Kosuga, Y. 2014 Nonlinear current-driven ion-acoustic instability driven by phase-space structure. Phys. Plasmas 21, 112307.
Livi, S. & Marsch, E. 1986 Comparison of the Bhatnagar–Gross–Krook approximation with the exact Coulomb collision operator. Phys. Rev. A 34, 533540.
Lu, Q. M., Wang, D. Y. & Wang, S. 2005 Generation mechanism of electrostatic solitary structures in the Earths auroral region. J. Geophys. Res. 10, A03223.
Marino, R., Sorriso-Valvo, L., Carbone, V., Noullez, A., Bruno, R. & Bavassano, B. 2008 Heating the solar wind by a magnetohydrodynamic turbulent energy cascade. Astrophys. J. Lett. 667, L71L74.
Marsch, E. 2006 Kinetic physics of the solar corona and solar wind. Living Rev. Sol. Phys. 3, 1100.
Marsch, E., Muhlhauser, K. H., Schwenn, R., Rosenbauer, H., Pilipp, W. & Neubauer, F. M. 1982 Solar wind protons: three-dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU. J. Geophys. Res. 87, 52.
Maruca, B. A., Bale, S. D., Sorriso-Valvo, L., Kasper, J. C. & Stevens, M. L. 2013 Collisional thermalization of hydrogen and helium in solar–wind plasma. Phys. Rev. Lett. 111 (24), 241101.
Maruca, B. A., Kasper, J. C. & Bale, S. D. 2011 What are the relative roles of heating and cooling in generating solar wind temperature anisotropies? Phys. Rev. Lett. 107, 201101.
Matthaeus, W. H., Zank, G. P., Smith, C. W. & Oughton, S. 1999 Turbulence, spatial transport, and heating of the solar wind. Phys. Rev. Lett. 82, 3444.
Matthaeus, W. H., Dasso, S., Weygand, J. M., Milano, L. J., Smith, C. W. & Kivelson, M. G. 2005 Spatial correlation of solar–wind turbulence from two-point measurements. Phys. Rev. Lett. 95 (23), 231101.
Matthaeus, W. H., Oughton, S., Osman, K. T., Servidio, S., Wan, M., Gary, S. P., Shay, M. A., Valentini, F., Roytershteyn, V. & Karimabadi, H. 2014 Nonlinear and linear timescales near kinetic scales in solar wind turbulence. Astrophys. J. 790, 155.
Matthaeus, W. H., Wan, M., Servidio, S., Greco, A., Osman, K. T., Oughton, S. & Dmitruk, P. 2015 Intermittency, nonlinear dynamics and dissipation in the solar wind and astrophysical plasmas. Phil. Trans. R. Soc. Lond. A 373, 20140154.
Moffatt, H. K. 1978 Field Generation in Electrically Conducting Fluids. Cambridge University Press.
Ng, C. S. & Bhattacharjee, A. 1996 Interaction of shear-Alfvén wave packets: implication for weak magnetohydrodynamic turbulence in astrophysical plasmas. Astrophys. J. 465, 845.
Parashar, T. N., Shay, M. A., Cassak, P. A. & Matthaeus, W. H. 2009 Kinetic dissipation and anisotropic heating in a turbulent collisionless plasma. Phys. Plasmas 16, 032310.
Parker, E. N. 1979 Cosmical Magnetic Fields: Their Origin and Their Activity. Oxford University Press.
Perrone, D., Valentini, F., Servidio, S., Dalena, S. & Veltri, P. 2012 Vlasov simulations of multi-ion plasma turbulence in the solar wind. Astrophys. J. 762, 99.
Pezzi, O., Valentini, F., Perrone, D. & Veltri, P. 2013 Eulerian simulations of collisional effects on electrostatic plasma waves. Phys. Plasmas 20, 092111.
Pezzi, O., Valentini, F., Perrone, D. & Veltri, P. 2014 Erratum: Eulerian simulations of collisional effects on electrostatic plasma waves. Phys. Plasmas 21, 019901; Phys. Plasmas 20, 092111 (2013).
Pezzi, O., Valentini, F. & Veltri, P. 2015a Collisional relaxation: Landau versus Dougherty operator. J. Plasma Phys. 81, 305810107.
Pezzi, O., Valentini, F. & Veltri, P. 2015b Nonlinear regime of electrostatic waves propagation in presence of electron–electron collisions. Phys. Plasmas 22, 042112.
Pezzi, O., Valentini, F. & Veltri, P. 2016a Collisional relaxation of fine velocity structures in plasmas. Phys. Rev. Lett. 116, 145001.
Pezzi, O., Camporeale, E. & Valentini, F. 2016b Collisional effects on the numerical recurrence in Vlasov–Poisson simulations. Phys. Plasmas 23, 022013.
Pezzi, O., Parashar, T. N., Servidio, S., Valentini, F., Vásconez, C. L., Yang, Y., Malara, F., Matthaeus, W. H. & Veltri, P. 2017a Revisiting a classic: the Parker–Moffatt problem. Astrophys. J. 834, 166.
Pezzi, O., Parashar, T. N., Servidio, S., Valentini, F., Vásconez, C. L., Yang, Y., Malara, F., Matthaeus, W. H. & Veltri, P. 2017b Colliding Alfvénic wave packets in magnetohydrodynamics, Hall and kinetic simulations. J. Plasma Phys. 83, 905830105.
Sahraoui, F., Galtier, S. & Belmont, G. 2007 On waves in incompressible Hall magnetohydrodynamics. J. Plasma Phys. 73, 723730.
Sahraoui, F., Goldstein, M. E., Robert, P. & Khotyaintsev, Y. V. 2009 Evidence of a cascade and dissipation of solar–wind turbulence at the electron gyroscale. Phys. Rev. Lett. 102, 231102.
Servidio, S., Valentini, F., Califano, F. & Veltri, P. 2012 Local kinetic effects in two-dimensional plasma turbulence. Phys. Rev. Lett. 108, 045001.
Servidio, S., Valentini, F., Perrone, D., Greco, A., Califano, F., Matthaeus, W. H. & Veltri, P. 2015 A kinetic model of plasma turbulence. J. Plasma Phys. 81, 328510107.
Sorriso-Valvo, L., Marino, R., Carbone, V., Noullez, A., Lepreti, F., Veltri, P., Bruno, R., Bavassano, B. & Pietropaolo, E. 2007 Observation of inertial energy cascade in interplanetary space plasma. Phys. Rev. Lett. 99, 115001.
Spitzer, L. Jr. 1956 Physics of Fully Ionized Gases. Interscience Publishers.
Tigik, S. F., Ziebell, L. F., Yoon, P. H. & Kontar, E. P. 2016 Two-dimensional time evolution of beam-plasma instability in the presence of binary collisions. Astron. Astrophys. 586, A19.
Tokar, R. L. & Gary, S. P. 1984 Electrostatic hiss and the beam driven electron acoustic instability in the dayside polar cusp. Geophys. Res. Lett. 11, 11801183.
Vaivads, A., Retinó, A., Soucek, J., Khotyaintsev, Yu. V., Valentini, F., Escoubet, C. P., Alexandrova, O., André, M., Bale, S. D., Balikhin, M. et al. 2016 Turbulence heating ObserveR – satellite mission proposal. J. Plasma Phys. 82, 905820501.
Valentini, F., Carbone, V., Veltri, P. & Mangeney, A. 2005 Self-consistent Lagrangian study of nonlinear Landau damping. Phys. Rev. E 71, 017402.
Valentini, F., Califano, F., Perrone, D., Pegoraro, F. & Veltri, P. 2011a New ion-wave path in the energy cascade. Phys. Rev. Lett. 106, 165002.
Valentini, F., Perrone, D. & Veltri, P. 2011b Short-wavelength electrostatic fluctuations in the solar wind. Astrophys. J. 739, 54.
Valentini, F., ONeil, T. M. & Dubin, D. H. E. 2006 Excitation of nonlinear electron acoustic waves. Phys. Plasmas 13 (5), 052303.
Valentini, F., Perrone, D., Califano, F., Pegoraro, F., Veltri, P., Morrison, P. J. & O’Neil, T. M. 2012 Undamped electrostatic plasma waves. Phys. Plasmas 20, 034701.
Valentini, F., Perrone, D., Stabile, S., Pezzi, O., Servidio, S., De Marco, R. & Consolini, G. 2016 Differential kinetic dynamics and heating of ions in the turbulent solar wind. New J. Phys. 18 (12), 125001.
Valentini, F., Servidio, S., Perrone, D., Califano, F., Matthaeus, W. H. & Veltri, P. 2014 Hybrid Vlasov–Maxwell simulations of two-dimensional turbulence in plasmas. Phys. Plasmas 21, 082307.
Valentini, F., Travnicek, P., Califano, F., Hellinger, P. & Mangeney, A. 2007 A hybrid-Vlasov model based on the current advance method for the simulation of collisionless magnetized plasma. J. Comput. Phys. 225, 753770.
Verdini, A., Velli, M. & Buchlin, E. 2009 Turbulence in the sub-Alfvénic solar wind driven by reflection of low-frequency Alfvén waves. Astrophys. J. Lett. 700, L39.
Villani, C. 2002 Handbook of Mathematical Fluid Dynamics, A Review of Mathematical Topics in Collisional Kinetic Theory, vol. 1, pp. 71305.
Watanabe, K. & Taniuti, T. 1977 Electron-acoustic mode in a plasma of two-temperature electrons. J. Phys. Soc. Japan 43, 1819.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Plasma Physics
  • ISSN: 0022-3778
  • EISSN: 1469-7807
  • URL: /core/journals/journal-of-plasma-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 10
Total number of PDF views: 144 *
Loading metrics...

Abstract views

Total abstract views: 271 *
Loading metrics...

* Views captured on Cambridge Core between 22nd May 2017 - 19th March 2018. This data will be updated every 24 hours.