Skip to main content
    • Aa
    • Aa

To properly describe heating in weakly collisional turbulent plasmas such as the solar wind, interparticle collisions should be taken into account. Collisions can convert ordered energy into heat by means of irreversible relaxation towards the thermal equilibrium. Recently, Pezzi et al. (Phys. Rev. Lett., vol. 116, 2016a, 145001) showed that the plasma collisionality is enhanced by the presence of fine structures in velocity space. Here, the analysis is extended by directly comparing the effects of the fully nonlinear Landau operator and a linearized Landau operator. By focusing on the relaxation towards the equilibrium of an out of equilibrium distribution function in a homogeneous force-free plasma, here it is pointed out that it is significant to retain nonlinearities in the collisional operator to quantify the importance of collisional effects. Although the presence of several characteristic times associated with the dissipation of different phase space structures is recovered in both the cases of the nonlinear and the linearized operators, the influence of these times is different in the two cases. In the linearized operator case, the recovered characteristic times are systematically larger than in the fully nonlinear operator case, this suggesting that fine velocity structures are dissipated more slowly if nonlinearities are neglected in the collisional operator.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Solar wind collisional heating
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Solar wind collisional heating
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Solar wind collisional heating
      Available formats
Corresponding author
Email address for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

O. Alexandrova , V. Carbone , P. Veltri  & L. Sorriso-Valvo 2008 Small-scale energy cascade of the solar wind turbulence. Astrophys. J. 674, 1153.

F. Anderegg , C. F. Driscoll , D. H. E. Dubin  & T. M. ONeil 2009a Measurement of correlation-enhanced collision rates. Phys. Rev. Lett. 102 (9), 095001.

F. Anderegg , C. F. Driscoll , D. H. E. Dubin , T. M. ONeil  & F. Valentini 2009b Electron acoustic waves in pure ion plasmas a. Phys. Plasmas 16 (5), 055705.

M. W. Anderson  & T. M. O’Neil 2007a Eigenfunctions and eigenvalues of the Dougherty collision operator. Phys. Plasmas 14, 052103.

M. W. Anderson  & T. M. O’Neil 2007b Collisional damping of plasma waves on a pure electron plasma column. Phys. Plasmas 14, 112110.

R. Balescu 1960 Irreversible processes in ionized gases. Phys. Fluids 3 (1), 5263.

G. Belmont , F. Mottez , T. Chust  & S. Hess 2008 Existence of non-Landau solutions for Langmuir waves. Phys. Plasmas 15 (5), 052310.

I. B. Bernstein , J. M. Greene  & M. D. Kruskal 1957 Exact nonlinear plasma oscillations. Phys. Rev. 108 (3), 546.

P. L. Bhatnagar , E. P. Gross  & M. Krook 1954 A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511525.

A. V. Bobylev  & I. F. Potapenko 2013 Monte Carlo methods and their analysis for Coulomb collisions in multicomponent plasmas. J. Comput. Phys. 246, 123144.

E. Camporeale  & D. Burgess 2011 The dissipation of solar wind turbulent fluctuations at electron scales. Astrophys. J. 730, 114.

S. Chandrasekhar 1956 On force-free magnetic fields. Proc. Natl Acad. Sci. 42, 273.

S. Chapman  & V. C. A. Ferraro 1930 A new theory of magnetic storms. Nature 126 (3169), 129130.

S. Chapman  & V. C. A. Ferraro 1931 A new theory of magnetic storms. Terrestrial Magn. Atmos. Electricity 36 (2), 7797.

T. Chust , G. Belmont , F. Mottez  & S. Hess 2009 Landau and non-Landau linear damping: physics of the dissipation. Phys. Plasmas 16 (9), 092104.

S. R. Cranmer , W. H. Matthaeus , B. A. Breech  & J. C. Kasper 2009 Empirical constraints on proton and electron heating in the fast solar wind. Astrophys. J. 702, 1604.

L. J. Curtis , H. G. Berry  & J. Bromander 1970 Analysis of multi-exponential decay curves. Phys. Scr. 2 (4–5), 216.

M. Dobrowolny , A. Mangeney  & P. Veltri 1980a Fully developed anisotropic hydromagnetic turbulence in interplanetary space. Phys. Rev. Lett. 45, 144.

M. Dobrowolny , A. Mangeney  & P. Veltri 1980b Properties of magnetohydrodynamic turbulence in the solar wind. In Solar and Interplanetary Dynamics. Springer.

J. K. Dougherty 1964 Model Fokker–Planck equation for a plasma and its solution. Phys. Fluids 7, 113133.

J. K. Dougherty  & S. R. Watson 1967 Model Fokker-Planck equations: part 2. The equation for a multicomponent plasma. J. Plasma Phys. 1, 317326.

W. M. Elsässer 1950 The hydromagnetic equations. Phys. Rev. 79, 183.

F. Filbet  & L. Pareschi 2002 A numerical method for the accurate solution of the Fokker–Planck–Landau equation in the nonhomogeneous case. J. Comput. Phys. 179, 126.

L. Franci , A. Verdini , L. Matteini , S. Landi  & P. Hellinger 2015 Solar wind turbulence from MHD to sub-ion scales: high resolution hybrid simulations. Astrophys. J. Lett. 804, L39.

U. P. Frisch 1995 Turbulence: the Legacy of A.N. Kolmogorov. Cambridge University Press.

S. P. Gary 1993 Theory of Space Plasma Microinstabilities. Cambridge University Press.

S. P. Gary , S. Saito  & Y. Narita 2010 Whistler turbulence wavevector anisotropies: particle-in-cell simulations. Astrophys. J. 716, 1332.

R. Hernandez  & E. Marsch 1985 Collisional time scales for temperature and velocity exchange between drifting Maxwellians. J. Geophys. Res. 90 (A11), 1106211066.

E. Hirvijoki , M. Lingam , D. Pfefferlé , L. Comisso , J. Candy  & A. Bhattacharjee 2016 Fluid moments of the nonlinear Landau collision operator. Phys. Plasmas 23, 080701.

J. P. Holloway  & J. J. Dorning 1991 Undamped plasma waves. Phys. Rev. A 44 (6), 3856.

G. G. Howes  & K. D. Nielson 2013 Alfvén wave collisions, the fundamental building block of plasma turbulence. I. Asymptotic solution. Phys. Plasmas 20, 072302.

T. W. Johnston , Y. Tyshetskiy , A. Ghizzo  & P. Bertrand 2009 Persistent subplasma-frequency kinetic electrostatic electron nonlinear waves. Phys. Plasmas 16 (4), 042105.

R. H. Kraichnan 1965 Inertialrange spectrum of hydromagnetic turbulence. Phys. Fluids 8, 13851387.

A. Lenard 1960 On Bogoliubov’s kinetic equation for a spatially homogeneous plasma. Ann. Phys. 10 (3), 390.

S. Livi  & E. Marsch 1986 Comparison of the Bhatnagar–Gross–Krook approximation with the exact Coulomb collision operator. Phys. Rev. A 34, 533540.

E. Marsch 2006 Kinetic physics of the solar corona and solar wind. Living Rev. Sol. Phys. 3, 1100.

E. Marsch , K. H. Muhlhauser , R. Schwenn , H. Rosenbauer , W. Pilipp  & F. M. Neubauer 1982 Solar wind protons: three-dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU. J. Geophys. Res. 87, 52.

B. A. Maruca , S. D. Bale , L. Sorriso-Valvo , J. C. Kasper  & M. L. Stevens 2013 Collisional thermalization of hydrogen and helium in solar–wind plasma. Phys. Rev. Lett. 111 (24), 241101.

B. A. Maruca , J. C. Kasper  & S. D. Bale 2011 What are the relative roles of heating and cooling in generating solar wind temperature anisotropies? Phys. Rev. Lett. 107, 201101.

W. H. Matthaeus , G. P. Zank , C. W. Smith  & S. Oughton 1999 Turbulence, spatial transport, and heating of the solar wind. Phys. Rev. Lett. 82, 3444.

W. H. Matthaeus , S. Dasso , J. M. Weygand , L. J. Milano , C. W. Smith  & M. G. Kivelson 2005 Spatial correlation of solar–wind turbulence from two-point measurements. Phys. Rev. Lett. 95 (23), 231101.

W. H. Matthaeus , S. Oughton , K. T. Osman , S. Servidio , M. Wan , S. P. Gary , M. A. Shay , F. Valentini , V. Roytershteyn  & H. Karimabadi 2014 Nonlinear and linear timescales near kinetic scales in solar wind turbulence. Astrophys. J. 790, 155.

C. S. Ng  & A. Bhattacharjee 1996 Interaction of shear-Alfvén wave packets: implication for weak magnetohydrodynamic turbulence in astrophysical plasmas. Astrophys. J. 465, 845.

T. N. Parashar , M. A. Shay , P. A. Cassak  & W. H. Matthaeus 2009 Kinetic dissipation and anisotropic heating in a turbulent collisionless plasma. Phys. Plasmas 16, 032310.

D. Perrone , F. Valentini , S. Servidio , S. Dalena  & P. Veltri 2012 Vlasov simulations of multi-ion plasma turbulence in the solar wind. Astrophys. J. 762, 99.

O. Pezzi , F. Valentini , D. Perrone  & P. Veltri 2013 Eulerian simulations of collisional effects on electrostatic plasma waves. Phys. Plasmas 20, 092111.

O. Pezzi , F. Valentini , D. Perrone  & P. Veltri 2014 Erratum: Eulerian simulations of collisional effects on electrostatic plasma waves. Phys. Plasmas 21, 019901; Phys. Plasmas 20, 092111 (2013).

O. Pezzi , F. Valentini  & P. Veltri 2015b Nonlinear regime of electrostatic waves propagation in presence of electron–electron collisions. Phys. Plasmas 22, 042112.

O. Pezzi , F. Valentini  & P. Veltri 2016a Collisional relaxation of fine velocity structures in plasmas. Phys. Rev. Lett. 116, 145001.

O. Pezzi , E. Camporeale  & F. Valentini 2016b Collisional effects on the numerical recurrence in Vlasov–Poisson simulations. Phys. Plasmas 23, 022013.

O. Pezzi , T. N. Parashar , S. Servidio , F. Valentini , C. L. Vásconez , Y. Yang , F. Malara , W. H. Matthaeus  & P. Veltri 2017a Revisiting a classic: the Parker–Moffatt problem. Astrophys. J. 834, 166.

O. Pezzi , T. N. Parashar , S. Servidio , F. Valentini , C. L. Vásconez , Y. Yang , F. Malara , W. H. Matthaeus  & P. Veltri 2017b Colliding Alfvénic wave packets in magnetohydrodynamics, Hall and kinetic simulations. J. Plasma Phys. 83, 905830105.

F. Sahraoui , S. Galtier  & G. Belmont 2007 On waves in incompressible Hall magnetohydrodynamics. J. Plasma Phys. 73, 723730.

F. Sahraoui , M. E. Goldstein , P. Robert  & Y. V. Khotyaintsev 2009 Evidence of a cascade and dissipation of solar–wind turbulence at the electron gyroscale. Phys. Rev. Lett. 102, 231102.

S. Servidio , F. Valentini , F. Califano  & P. Veltri 2012 Local kinetic effects in two-dimensional plasma turbulence. Phys. Rev. Lett. 108, 045001.

L. Sorriso-Valvo , R. Marino , V. Carbone , A. Noullez , F. Lepreti , P. Veltri , R. Bruno , B. Bavassano  & E. Pietropaolo 2007 Observation of inertial energy cascade in interplanetary space plasma. Phys. Rev. Lett. 99, 115001.

S. F. Tigik , L. F. Ziebell , P. H. Yoon  & E. P. Kontar 2016 Two-dimensional time evolution of beam-plasma instability in the presence of binary collisions. Astron. Astrophys. 586, A19.

R. L. Tokar  & S. P. Gary 1984 Electrostatic hiss and the beam driven electron acoustic instability in the dayside polar cusp. Geophys. Res. Lett. 11, 11801183.

A. Vaivads , A. Retinó , J. Soucek , Yu. V. Khotyaintsev , F. Valentini , C. P. Escoubet , O. Alexandrova , M. André , S. D. Bale , M. Balikhin 2016 Turbulence heating ObserveR – satellite mission proposal. J. Plasma Phys. 82, 905820501.

F. Valentini , F. Califano , D. Perrone , F. Pegoraro  & P. Veltri 2011a New ion-wave path in the energy cascade. Phys. Rev. Lett. 106, 165002.

F. Valentini , D. Perrone  & P. Veltri 2011b Short-wavelength electrostatic fluctuations in the solar wind. Astrophys. J. 739, 54.

F. Valentini , T. M. ONeil  & D. H. E. Dubin 2006 Excitation of nonlinear electron acoustic waves. Phys. Plasmas 13 (5), 052303.

F. Valentini , D. Perrone , S. Stabile , O. Pezzi , S. Servidio , R. De Marco  & G. Consolini 2016 Differential kinetic dynamics and heating of ions in the turbulent solar wind. New J. Phys. 18 (12), 125001.

F. Valentini , S. Servidio , D. Perrone , F. Califano , W. H. Matthaeus  & P. Veltri 2014 Hybrid Vlasov–Maxwell simulations of two-dimensional turbulence in plasmas. Phys. Plasmas 21, 082307.

F. Valentini , P. Travnicek , F. Califano , P. Hellinger  & A. Mangeney 2007 A hybrid-Vlasov model based on the current advance method for the simulation of collisionless magnetized plasma. J. Comput. Phys. 225, 753770.

A. Verdini , M. Velli  & E. Buchlin 2009 Turbulence in the sub-Alfvénic solar wind driven by reflection of low-frequency Alfvén waves. Astrophys. J. Lett. 700, L39.

C. Villani 2002 Handbook of Mathematical Fluid Dynamics, A Review of Mathematical Topics in Collisional Kinetic Theory, vol. 1, pp. 71305.

K. Watanabe  & T. Taniuti 1977 Electron-acoustic mode in a plasma of two-temperature electrons. J. Phys. Soc. Japan 43, 1819.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Plasma Physics
  • ISSN: 0022-3778
  • EISSN: 1469-7807
  • URL: /core/journals/journal-of-plasma-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 5
Total number of PDF views: 79 *
Loading metrics...

Abstract views

Total abstract views: 136 *
Loading metrics...

* Views captured on Cambridge Core between 22nd May 2017 - 22nd September 2017. This data will be updated every 24 hours.