Skip to main content Accessibility help
×
Home

Stereoscopic imaging of dusty plasmas

  • André Melzer (a1), Michael Himpel (a1), Carsten Killer (a1) and Matthias Mulsow (a1)

Abstract

The fundamentals of stereoscopy and their application to dusty plasmas are described. It is shown that stereoscopic methods allow us to measure the three-dimensional particle positions and trajectories with high spatial and temporal resolution. The underlying technical implications are presented and requirements and limitations are discussed. The stereoscopic method is demonstrated for dust particles in dust-density waves under microgravity conditions.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Stereoscopic imaging of dusty plasmas
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Stereoscopic imaging of dusty plasmas
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Stereoscopic imaging of dusty plasmas
      Available formats
      ×

Copyright

Corresponding author

Email address for correspondence: melzer@physik.uni-greifswald.de

References

Hide All
Annaratone, B. M., Antonova, T., Goldbeck, D. D., Thomas, H. M. & Morfill, G. E. 2004 Complex-plasma manipulation by radiofrequency biasing. Plasma Phys. Control. Fusion 46, B495B509.
Arp, O., Block, D., Piel, A. & Melzer, A. 2004 Dust coulomb balls: three-dimensional plasma crystals. Phys. Rev. Lett. 93, 165004.
Arp, O., Caliebe, D., Menzel, K. O., Piel, A. & Goree, J. A. 2010 Experimental investigation of dust density waves and plasma glow. IEEE Trans. Plasma Sci. 38, 842.
Barkan, A., Merlino, R. L. & D’Angelo, N. 1995 Laboratory observation of the dust-acoustic wave mode. Phys. Plasmas 2, 35633565.
Bonitz, M., Horing, N. & Ludwig, P. 2010 Introduction to Complex Plasmas. Springer.
Bonitz, M., Lopez, J., Becker, K. & Thomsen, H. 2014 Complex Plasmas. Springer.
Bonitz, M., Ludwig, P., Baumgartner, H., Henning, C., Filinov, A., Block, D., Arp, O., Piel, A., Kding, S., Ivanov, Y. et al. 2008 Classical and quantum coulomb crystals. Phys. Plasmas 15, 055704.
Bouchoule, A.(Ed.) 1999 Dusty Plasmas, John Wiley.
Bouguet, J.-Y.2008 Camera calibration toolbox for matlab. http://www.vision.caltech.edu/bouguetj/calib_doc/index.html.
Buttenschön, B., Himpel, M. & Melzer, A. 2011 Spatially resolved three-dimensional particle dynamics in the void of dusty plasmas under microgravity using stereoscopy. New J. Phys. 13, 023042.
Chang, M.-C., Teng, L.-W. & I, L. 2012 Micro-origin of no-trough trapping in self-excited nonlinear dust acoustic waves. Phys. Rev. E 85, 046410.
Crocker, J. C. & Grier, D. G. 1996 Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298310.
Dalziel, S. B. 1992 Decay of rotating turbulence: some particle tracking experiments. Appl. Sci. Res. 49, 217244.
Epstein, P. S. 1924 On the resistance experienced by spheres in their motion through gases. Phys. Rev. 23, 710733.
Feng, Y., Goree, J. & Liu, B. 2007 Accurate particle position measurement from images. Rev. Sci. Instrum. 78, 053704.
Flanagan, T. M. & Goree, J. 2010 Observation of the spatial growth of self-excited dust-density waves. Phys. Plasmas 17, 123702.
Fortov, V. E., Vaulina, O. S. & Petrov, O. F. 2005 Dusty plasma liquid: structure and transfer phenomena. Plasma Phys. Control. Fusion 47, B551.
Hartley, R. I. & Sturm, P. 1997 Triangulation. Comput. Vis. Image Underst. 68, 146157.
Hartley, R. I. & Zisserman, A. 2004 Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press.
Hartmann, P., Donko, I. & Donko, Z. 2013 Single exposure three-dimensional imaging of dusty plasma clusters. Rev. Sci. Instrum. 84, 023501.
Himpel, M., Buttenschön, B. & Melzer, A. 2011 Three-view stereoscopy in dusty plasmas under microgravity: a calibration and reconstruction approach. Rev. Sci. Instrum. 82, 053706.
Himpel, M., Killer, C., Buttenschön, B. & Melzer, A. 2012 Three-dimensional single particle tracking in dense dust clouds by stereoscopy of fluorescent particles. Phys. Plasmas 19, 123704.
Himpel, M., Killer, C., Melzer, A., Bockwoldt, T., Menzel, K. O. & Piel, A. 2014 Stereoscopy of dust density waves under microgravity: velocity distributions and phase resolved single particle analysis. Phys. Plasmas 21, 033703.
Hou, L.-J. & Piel, A. 2008 Trapped particles by large-amplitude waves in two-dimensional Yukawa liquids. Phys. Plasmas 15, 073707.
Ivanov, Y. & Melzer, A. 2007 Particle positioning techniques for dusty plasma experiments. Rev. Sci. Instrum. 78, 033506.
Ivlev, A., Löwen, H., Morfill, G. & Royall, C. P. 2012 Complex Plasmas and Colloidal Dispersions: Particle-resolved Studies of Classical Liquids and Solids. World Scientific.
Käding, S., Block, D., Melzer, A., Piel, A., Kählert, H., Ludwig, P. & Bonitz, M. 2008 Shell transitions between metastable states of Yukawa balls. Phys. Plasmas 15, 073710.
Khrapak, S. A., Samsonov, D., Morfill, G. E., Thomas, H., Yaroshenko, V., Rothermel, H., Hagl, T., Fortov, V., Nefedov, A., Molotkov, V. et al. 2003 Compressional waves in complex (dusty) plasmas under microgravity conditions. Phys. Plasmas 10, 1.
Killer, C., Himpel, M., Melzer, A., Bockwoldt, T., Menzel, K. O. & Piel, A. 2014 Oscillation amplitudes in 3-d dust density waves in dusty plasmas under microgravity conditions. IEEE Trans. Plasma Sci. 42, 26802681.
Klindworth, M., Arp, O. & Piel, A. 2006 Langmuir probe diagnostics in the impf device and comparison with simulations and tracer particle experiments. J. Phys. D: Appl. Phys. 39, 1095.
Kroll, M., Block, D. & Piel, A. 2008 Digital in-line holography of dusty plasmas. Phys. Plasmas 15, 063703.
Levoy, M. 2006 Light fields and computational imaging. Computer 39 (8), 4655.
Li, B., Heng, L., Koser, K. & Pollefeys, M. 2013 A multiple-camera system calibration toolbox using a feature descriptor-based calibration pattern. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 13011307. IEEE.
Liu, B., Goree, J., Nosenko, V. & Boufendi, L. 2003 Radiation pressure and gas drag forces on a melamine–formaldehyde microsphere in a dusty plasma. Phys. Plasmas 10, 9.
Melzer, A., Buttenschön, B., Miksch, T., Passvogel, M., Block, D., Arp, O. & Piel, A. 2010 Finite dust clusters in dusty plasmas. Plasma Phys. Control. Fusion 52, 124028.
Melzer, A. & Goree, J. 2008 Fundamentals of complex plasmas. In Low Temperature Plasma Physics. Fundamentals, Technologies, and Techniques, 2nd edn. (ed. Hippler, R., Kersten, H., Schmidt, M. & Schoenbach, K. H.), pp. 129173. Wiley-VCH Verlag GmbH.
Menzel, K. O., Arp, O., Caliebe, D. & Piel, A. 2010 The structure of self-excited dust-density waves under microgravity. IEEE Trans. Plasma Sci. 38, 838.
Menzel, K. O., Arp, O. & Piel, A. 2011 Frequency clusters and defect structures in nonlinear dust-density waves under microgravity conditions. Phys. Rev. E 83, 016402.
Merlino, R. L. 2009 Dust-acoustic waves driven by an ion-dust streaming instability in laboratory discharge dusty plasma experiments. Phys. Plasmas 16, 124501.
Merlino, R. L. 2014 25 years of dust acoustic waves. J. Plasma Phys. 80, 773786.
Ouellette, N. T., Xu, H. & Bodenschatz, E. 2006 A quantitative study of three-dimensional lagrangian particle tracking algorithms. Exp. Fluids 40, 301313.
Piel, A. 2010 Plasma Physics: An Introduction to Laboratory, Space, and Fusion Plasmas. Springer.
Piel, A., Arp, O., Block, D., Pilch, I., Trottenberg, T., Käding, S., Melzer, A., Baumgartner, H., Henning, C. & Bonitz, M. 2008 Complex plasmas: forces and dynamical behaviour. Plasma Phys. Control. Fusion 50, 124003.
Pieper, J. B., Goree, J. & Quinn, R. A. 1996 Experimental studies of two-dimensional and three-dimensional structure in a crystallized dusty plasma. J. Vac. Sci. Technol. A 14, 519520.
Prabhakara, H. R. & Tanna, V. L. 1996 Trapping of dust and dust acoustic waves in laboratory plasmas. Phys. Plasmas 3, 3176.
Salvi, J., Armangué, X. & Batlle, J. 2002 A comparative review of camera calibrating methods with accuracy evaluation. Patter. Recognit. 35, 16171635.
Samsonov, D., Elsaesser, A., Edwards, A., Thomas, H. M. & Morfill, G. E. 2008 High speed laser tomography system. Rev. Sci. Instrum. 79, 035102.
Savitzky, A. & Golay, M. J. E. 1964 Smoothing and differentiation of data by simplified least squares procedures. Analyt. Chem. 36 (8), 16271639.
Sbalzarini, I. F. & Koumoutsakos, P. 2005 Feature point tracking and trajectory analysis for video imaging in cell biology. J. Struct. Biol. 151, 182195.
Schwabe, M., Rubin-Zuzic, M., Zhdanov, S., Thomas, H. M. & Morfill, G. E. 2007 Highly resolved self-excited density waves in a complex plasma. Phys. Rev. Lett. 99, 095002.
Shukla, P. K. 2001 A survey of dusty plasma physics. Phys. Plasmas 8, 1791.
Shukla, P. K. & Eliasson, B. 2009 Colloquium: Fundamentals of dust-plasma interactions. Rev. Mod. Phys. 81, 2544.
Shukla, P. K. & Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Institute of Physics Publishing.
Svoboda, T., Martinec, D. & Pajdla, T. 2005 A convenient multi-camera self-calibration for virtual environments. PRESENCE: Teleoperators and Virtual Environments 14 (4), 407422.
Teng, L.-W., Chang, M.-C., Tseng, Y.-P. & I, L. 2009 Wave-particle dynamics of wave breaking in the self-excited dust acoustic wave. Phys. Rev. Lett. 103, 245005.
Thomas, E. 2009 Dust clouds in dc-generated dusty plasmas: transport, waves, and three-dimensional effects. Contrib. Plasma Phys. 49, 316345.
Wengert, C., Reeff, M., Cattin, P. C. & Székely, G. 2006 Fully automatic endoscope calibration for intraoperative use. In Bildverarbeitung für die Medizin, pp. 419423. Springer.
Williams, J. D. 2011 Application of tomographic particle image velocimetry to studies of transport in complex (dusty) plasma. Phys. Plasmas 18, 050702.
Williams, J. D. 2014 Evolution of frequency clusters in the naturally occurring dust acoustic wave. Phys. Rev. E 89, 023105.
Zhang, Z. 1998 Determining the epipolar geometry and its uncertainty: a review. Intl J. Comput. Vis. 27, 161195.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Related content

Powered by UNSILO

Stereoscopic imaging of dusty plasmas

  • André Melzer (a1), Michael Himpel (a1), Carsten Killer (a1) and Matthias Mulsow (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.