Skip to main content
×
Home

A super-cusp divertor configuration for tokamaks

Abstract

This study demonstrates a remarkable flexibility of advanced divertor configurations created with the remote poloidal field coils. The emphasis here is on the configurations with three poloidal field nulls in the divertor area. We are seeking the structures where all three nulls lie on the same separatrix, thereby creating two zones of a very strong flux expansion, as envisaged in the concept of Takase’s cusp divertor. It turns out that the set of remote coils can indeed produce a cusp divertor, with additional advantages of: (i) a large stand-off distance between the divertor and the coils and (ii) a thorough control that these coils exert over the fine features of the configuration. In reference to these additional favourable properties acquired by the cusp divertor, the resulting configuration could be called ‘a super-cusp’. General geometrical features of the three-null configurations produced by remote coils are described. Issues on the way to practical applications include the need for a more sophisticated control system and possible constraints related to excessively high currents in the divertor coils.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A super-cusp divertor configuration for tokamaks
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      A super-cusp divertor configuration for tokamaks
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      A super-cusp divertor configuration for tokamaks
      Available formats
      ×
Copyright
Corresponding author
Email address for correspondence: ryutov1@llnl.gov
References
Hide All
Albanese R., Ambrosino R. & Mattei M. 2014 A procedure for the design of snowflake magnetic configurations in tokamaks. Plasma Phys. Control. Fusion 56, 035008.
Brown J. W. & Churchill R. V. 2004 Complex Variables and Applications. McGraw-Hill.
Cohen R. H. & Ryutov D. D. 1996 Phenomenology of flute-like perturbations in the divertor region. Contrib. Plasma Phys. 36, 161165.
Covele B., Valanju P. M., Kotschenreuther M. & Mahajan S. 2014 An exploration of advanced inline-graphic $X$ -divertor scenarios on ITER. Nucl. Fusion 54, 072006.
Farina D., Pozzoli R. & Ryutov D. D. 1993 Effect of the limiter configuration on the electron temperature gradient instability in the tokamak scrape-off layer. Plasma Phys. Control. Fusion 35, 12711283.
Kolemen E., Allen S. L., Bray B. D., Fenstermacher M. E., Humphreys D. A., Hyatt A. W., Lasnier C. J., Leonard A. W., Makowski M. A., Mclean A. G., Maingi R., Nazikian R., Petrie T. W., Soukhanovskii V. A. & Unterberg E. A. 2015 Heat flux management via advanced magnetic divertor configurations and divertor detachment. J. Nucl. Mater. 463, 11861190.
Kotschenreuther M., Valanju P. M., Wiley J. & Mahajan S. 2007 On heat loading, novel divertors, and fusion reactors. Phys. Plasmas 14, 072502.
Kotschenreuther M., Valanju P. M., Wiley J., Rognlien T., Mahajan S. & Pekker M2004 Scrape off layer physics for burning plasmas and innovative divertor solutions. In IAEA Fusion Energy Conf., Vilamoura, Portugal, International Atomic Energy Agency, Vienna, 2004, paper IC/P6-43, http://www-naweb.iaea.org/napc/physics/fec/fec2004/papers/ic_p6-43.pdf.
Peng X., Ye M., Song Y., Mao X., Chen P. & Qian X. 2015 Engineering conceptual design of CFETR divertor. Fusion Engng. Des., doi:10.1016/j.fusengdes.2015.01.017.
Pitts R. A., Carpentier S., Escourbiac F., Hirai T., Komarov V., Lisgo S., Kukushkin A. S., Loarte A., Merola M., Baik A. S., Mitteau R., Sugihara M., Bazylev B. & Stangeby P. C. 2013 A full tungsten divertor for ITER: physics issues and design status. J. Nucl. Mater. 438, S48S56.
Pitts R. A., Duval B. P., Loarte A., Moret J. M., Boedo J. A., Coster D., Furno I., Horacek J., Kukushkin A. S., Reiter J. & Rommers J. 2001 Divertor geometry effects on detachment in TCV. J. Nucl. Mater. 290, 940946.
Reimerdes H., Canal G. P., Duval B. P., Labit B., Lunt T., Vijvers W. A. J., Coda S., De Temmerman G., Morgan T. W., Nespoli F., Taland B.& The TCV Team 2013 Power distribution in the snowflake divertor in TCV. Plasma Phys. Control. Fusion 55, 124027.
Ryutov D. D. 2007 Geometrical properties of a ‘snowflake’ divertor. Phys. Plasmas 14, 064502.
Ryutov D. D., Cohen R. H., Farmer W. A., Rognlien T. D., Soukhanovskii V. A. & Umansky M. V. 2014a The ‘churning mode’ of plasma convection in the tokamak divertor region. Phys. Scr. 89, 088002.
Ryutov D. D., Cohen R. H., Rognlien T. D., Soukhanovskii V. A. & Umansky M. V. 2014b Comment on ‘Magnetic geometry and physics of advanced divertors: the inline-graphic $X$ -divertor and the snowflake’ [Phys. Plasmas (2013) 20, 102507]. Phys. Plasmas 21, 054701.
Ryutov D. D., Cohen R. H., Rognlien T. D. & Umansky M. V. 2008 Magnetic field structure of a snowflake divertor. Phys. Plasmas 15, 092501.
Ryutov D. D., Makowski M. A. & Umansky M. V. 2010 Local properties of the magnetic field in a snowflake divertor. Plasma Phys. Control. Fusion 52, 105001.
Ryutov D. D. & Soukhanovskii V. A. 2015 The snowflake divertor. Phys. Plasmas (submitted).
Ryutov D. D. & Umansky M. V. 2013 Divertor with a third-order null of the poloidal field. Phys. Plasmas 20, 092509.
Soukhanovskii V. A., Ahn J.-W., Bell R. E., Gates D. A., Gerhardt S., Kaita R., Kolemen E., Leblanc B. P., Maingi R., Makowski M., Maqueda R., Mclean A. G., Menard J. E., Mueller D., Paul S. F., Raman R. A., Roquemore L., Ryutov D. D., Sabbagh S.A. & Scott H. A. 2011 Taming the plasma–material interface with the ‘snowflake’ divertor in NSTX. Nucl. Fusion 51, 012001.
Soukhanovskii V. A., Allen S. L., Fenstermacher M. E., Hill D. N., Lasnier C. J., Makowski M. A., Mclean A. G., Meyer W. H., Kolemen E., Groebner R. J., Hyatt A. W., Leonard A. W., Osborne T. H. & Petrie T. W. 2015 Radiative snowflake divertor studies in DIII-D. J. Nucl. Mater. 463, 11911195.
Takase H. 2001 Guidance of divertor channel by cusp-like magnetic field for tokamak devices. J. Phys. Soc. Japan 70, 609612.
Vijvers W. A. J., Canal G. P., Labit B., Reimerdes H., Tal B., Coda S., De Temmerman G., Duval B. P., Morgan T. W., Zielinski J. J.& The TCV Team 2014 Power exhaust in the snowflake divertor for L- and H-mode TCV tokamak plasmas. Nucl. Fusion 54, 023009.
Wesson J. & Campbell D. J. 2011 Tokamaks. Oxford Science.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Plasma Physics
  • ISSN: 0022-3778
  • EISSN: 1469-7807
  • URL: /core/journals/journal-of-plasma-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 8
Total number of PDF views: 59 *
Loading metrics...

Abstract views

Total abstract views: 267 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th November 2017. This data will be updated every 24 hours.

A correction has been issued for this article: