Skip to main content

Three-dimensional magnetohydrodynamic equilibria with continuous magnetic fields

  • S. R. Hudson (a1) and B. F. Kraus (a1)

A brief critique is presented of some different classes of magnetohydrodynamic equilibrium solutions based on their continuity properties and whether the magnetic field is integrable or not. A generalized energy functional is introduced that is comprised of alternating ideal regions, with nested flux surfaces with an irrational rotational transform, and Taylor-relaxed regions, possibly with magnetic islands and chaos. The equilibrium states have globally continuous magnetic fields, and may be constructed for arbitrary three-dimensional plasma boundaries and appropriately prescribed pressure and rotational-transform profiles.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Three-dimensional magnetohydrodynamic equilibria with continuous magnetic fields
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Three-dimensional magnetohydrodynamic equilibria with continuous magnetic fields
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Three-dimensional magnetohydrodynamic equilibria with continuous magnetic fields
      Available formats
Corresponding author
Email address for correspondence:
Hide All
Arnold, V. I. 1978 Mathematical Methods of Classical Mechanics. Springer.
Bauer, F., Betancourt, O. & Garabedian, P. 1982 A Computational Method in Plasma Physics. Springer.
Berger, M. A. 1999 Introduction to magnetic helicity. Plasma Phys. Control. Fusion 41, B167.
Bernstein, I. B., Frieman, E. A., Kruskal, M. D. & Kulsrud, R. M. 1958 An energy principle for hydromagnetic stability problems. Proc. R. Soc. Lond. A 244, 17.
Betancourt, O. & Garabedian, P. 1985 Confinement and transport in stellarators. Phys. Fluids 28 (3), 912.
Bhattacharjee, A., Hayashi, T., Hegna, C. C., Nakajima, N. & Sato, T. 1995 Theory of pressure-induced islands and self-healing in three-dimensional toroidal magnetohydrodynamic equilibria. Phys. Plasmas 2 (3), 883.
Boozer, A. H. 1982 Establishment of magnetic coordinates for given magnetic field. Phys. Fluids 25 (3), 520.
Boozer, A. H. 2005 Physics of magnetically confined plasmas. Rev. Mod. Phys. 76 (4), 1071.
Bruno, O. P. & Laurence, P. 1996 Existence of three-dimensional toroidal MHD equilibria with nonconstant pressure. Commun. Pure Appl. Maths 49 (7), 717.
Cary, J. R. & Littlejohn, R. G. 1983 Noncanonical Hamiltonian mechanics and its application to magnetic field line flow. Ann. Phys. 151, 1.
Dewar, R. L., Hole, M. J., McGann, M., Mills, R. & Hudson, S. R. 2008 Relaxed plasma equilibria and entropy-related plasma self-organization principles. Entropy 10, 621.
D’haeseleer, W. D., Hitchon, W. N. G., Callen, J. D. & Shohet, J. L. 1991 Flux Coordinates and Magnetic Field Structure. Springer.
Furukawa, M. & Morrison, P. 2017 Simulated annealing for three-dimensional low-beta reduced MHD equilibria in cylindrical geometry. Plasma Phys. Control. Fusion 59, 054001.
Goldstein, H. 1980 Classical Mechanics, 2nd edn. Addison-Wesley.
Grad, H. 1960 Reducible problems in magneto-fluid dynamic steady flows. Rev. Mod. Phys. 32, 830.
Grad, H. 1967 Toroidal containment of a plasma. Phys. Fluids 10 (1), 137.
Grad, H. & Rubin, H. 1958 Hydromagnetic equilibria and force-free fields. In Proceedings of the 2nd UN Conference on the Peaceful Uses of Atomic Energy, vol.  31, p. 190.
Greene, J. M. 1979 A method for determining a stochastic transition. J. Math. Phys. 20 (6), 1183.
Hirshman, S. P., van Rij, W. I. & Merkel, P. 1986 Three-dimensional free boundary calculations using a spectral Green’s function method. Comput. Phys. Commun. 43, 143.
Hirshman, S. P., Sanchez, R. & Cook, C. R. 2011 SIESTA: A scalable iterative equilibrium solver for toroidal applications. Phys. Plasmas 18, 062504.
Hirshman, S. P. & Whitson, J. P. 1983 Steepest-descent moment method for three-dimensional magnetohydrodynamic equilibria. Phys. Fluids 26 (12), 3553.
Hole, M. J., Hudson, S. R. & Dewar, R. L. 2006 Stepped pressure profile equilibria in cylindrical plasmas via partial Taylor relaxation. J. Plasma Phys. 72 (6), 1167.
Hudson, S. R., Dewar, R. L., Dennis, G., Hole, M. J., McGann, M., von Nessi, G. & Lazerson, S. 2012 Computation of multi-region relaxed magnetohydrodynamic equilibria. Phys. Plasmas 19, 112502.
Hudson, S. R., Hole, M. J. & Dewar, R. L. 2007 Eigenvalue problems for Beltrami fields arising in a three-dimensional toroidal magnetohydrodynamic equilibrium problem. Phys. Plasmas 14, 052505.
Ichiguchi, K. & Carreras, B. A. 2011 Multi-scale MHD analysis including pressure transport equation for beta-increasing LHD plasma. Nucl. Fusion 51, 053021.
Ichiguchi, K., Wakatani, M., Unemura, T., Tatsuno, T. & Carrreras, B. A. 2001 Improved stability due to local pressure flattening in stellarators. Nucl. Fusion 41 (2), 181.
Jardin, S. C., Breslau, J. & Ferraro, N. 2007 A high-order implicit finite element method for integrating the two-fluid magnetohydrodynamic equations in two dimensions. J. Comput. Phys. 226, 2146.
Kraus, B. & Hudson, S. R.2017 Theory and discretization of ideal magnetohydrodynamic equilibria with fractal pressure profiles. Phys. Plasmas (Under review).
Kruskal, M. D. & Kulsrud, R. M. 1958 Equilibrium of a magnetically confined plasma in a toroid. Phys. Fluids 1 (4), 265.
Lichtenberg, A. J. & Lieberman, M. A. 1992 Regular and Chaotic Dynamics, 2nd edn. Springer.
Loizu, J. & Helander, P. 2017 Unified nonlinear theory of spontaneous and forced helical resonant MHD states. Phys. Plasmas 24 (4), 040701.
Loizu, J., Hudson, S. R., Bhattacharjee, A. & Helander, P. 2015a Magnetic islands and singular currents at rational surfaces in three-dimensional MHD equilibria. Phys. Plasmas 22, 022501.
Loizu, J., Hudson, S. R., Bhattacharjee, A., Lazerson, S. & Helander, P. 2015b Existence of three-dimensional ideal-MHD equilibria with current sheets. Phys. Plasmas 22, 090704.
Loizu, J., Hudson, S. R. & Nührenberg, C. 2016 Verification of the SPEC code in stellarator geometries. Phys. Plasmas 23 (11), 112505.
Meiss, J. D. 1992 Symplectic maps, variational principles and transport. Rev. Mod. Phys. 64 (3), 795.
Moffat, H. K. 2015 Magnetic relaxation and the Taylor conjecture. J. Plasma Phys. 81, 905810608.
Moser, J. 1973 Stable and Random Motions. Princeton University Press.
Park, W., Monticello, D., Strauss, H. & Manickam, J. 1986 Three dimensional stellarator equilibrium as an Ohmic steady state. Phys. Fluids 29 (4), 1171.
Rosenbluth, M. N., Dagazian, R. Y. & Rutherford, P. H. 1973 Nonlinear properties of the internal kink instability in the cylindrical tokamak. Phys. Fluids 16 (11), 1894.
Schlutt, M. G., Hegna, C. C., Sovinec, C. R., Held, E. D. & Kruger, S. E. 2013 Self-consistent simulations of nonlinear magnetohydrodynamics and profile evolution in stellarator configurations. Phys. Plasmas 20 (5), 056104.
Schlutt, M. G., Hegna, C. C., Sovinec, C. R., Knowlton, S. F. & Hebert, J. D. 2012 Numerical simulation of current evolution in the Compact Toroidal Hybrid. Nucl. Fusion 52, 103023.
Shafranov, J. D. 1966 Reviews of Plasma Physics, vol. 2. Consultants Bureau.
Shiraishi, J.-y., Ohsaki, S. & Yoshida, Z. 2005 Regularization of the Alfvén singularity by the Hall effect. Phys. Plasmas 12 (9), 092308.
Sovinec, C. R., Gianakon, T. A., Held, E. D., Kruger, S. E. & Schnack, D. D. 2003 Nimrod: a computational laboratory for studying nonlinear fusion magnetohydrodynamics. Phys. Plasmas 10 (5), 1727.
Suzuki, Y., Nakajima, N., Watanabe, K., Nakamura, Y. & Hayashi, T. 2006 Development and application of HINT2 to helical system plasmas. Nucl. Fusion 46, L19.
Taylor, J. B. 1974 Relaxation of toroidal plasma and generation of reverse magnetic-fields. Phys. Rev. Lett. 33, 1139.
Taylor, J. B. 1986 Relaxation and magnetic reconnection in plasmas. Rev. Mod. Phys. 58, 741.
Taylor, M. 1994 A high performance spectral code for nonlinear MHD stability. J. Comput. Phys. 110 (2), 407.
Weitzner, H. 2014 Ideal magnetohydrodynamic equilibrium in a non-symmetric topological torus. Phys. Plasmas 21 (2), 022515.
Weitzner, H. 2016 Expansions of non-symmetric toroidal magnetohydrodynamic equilibria. Phys. Plasmas 23 (6), 062512.
Woltjer, L. 1958 The stability of force-free magnetic fields. Astrophys. J. 128 (2), 384.
Zakharov, L. 2015 Implementation of Hamada principle in calculations of nested 3-D equilibria. J. Plasma Phys. 81 (6), 515810609.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Plasma Physics
  • ISSN: 0022-3778
  • EISSN: 1469-7807
  • URL: /core/journals/journal-of-plasma-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed