Skip to main content Accessibility help
×
Home
Hostname: page-component-56f9d74cfd-h5t46 Total loading time: 0.181 Render date: 2022-06-27T10:16:02.712Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Forcing isomorphism II

Published online by Cambridge University Press:  12 March 2014

M. C. Laskowski
Affiliation:
Department of Mathematics, University of Maryland, College Park, Maryland 20742, USA, E-mail: mcl@math.umd.edu
S. Shelah
Affiliation:
School of Mathematics, The Hebrew University, Jerusalem, Israel Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA, E-mail: shelah@math.huji.ac.il

Abstract

If T has only countably many complete types, yet has a type of infinite multiplicity then there is a c.c.c. forcing notion such that, in any -generic extension of the universe, there are non-isomorphic models M1 and M2 of T that can be forced isomorphic by a c.c.c. forcing. We give examples showing that the hypothesis on the number of complete types is necessary and what happens if ‘c.c.c’ is replaced by other cardinal-preserving adjectives. We also give an example showing that membership in a pseudo-elementary class can be altered by very simple cardinal-preserving forcings.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Baldwin, J. T., Fundamentals of stability theory, Springer-Verlag, 1988.CrossRefGoogle Scholar
[2]Baldwin, J. T., Laskowski, M. C., and Shelah, S., Forcing isomorphism, this Journal, vol. 58 (1993).Google Scholar
[3]Barwise, J., Back and forth through infinitary logic, Studies in model theory (Morley, M., editor), Mathematical Association of America, 1973, pp. 534.Google Scholar
[4]Kunen, K., Set theory, North-Holland, 1980.Google Scholar
[5]Lascar, D., Stability in model theory, Longman, 1987, originally published in French as Stabilité en Théorie des Modèles, 1986.Google Scholar
[6]Makkai, M., Survey of basic stability with particular emphasis on orthogonality and regular types, Israel Journal of Mathematics (1984).CrossRefGoogle Scholar
[7]Nachbin, L., The Haar integral, van Nostrand, 1965.Google Scholar
[8]Shelah, S., Existence of many L∞,λ-equivalent non-isomorphic models of T of power λ, Annals of Pure and Applied Logic, vol. 34 (1987).CrossRefGoogle Scholar
[9]Shelah, S., Classification theory, North-Holland, 1991.Google Scholar
1
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Forcing isomorphism II
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Forcing isomorphism II
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Forcing isomorphism II
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *