Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-55wx7 Total loading time: 0.218 Render date: 2021-02-24T17:38:51.578Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Identities on cardinals less than ℵω

Published online by Cambridge University Press:  12 March 2014

M. Gilchrist
Affiliation:
Mathematics Department, Simon Fraser University, Burnaby, B. C., Canada, E-mail: gilchris@cs.sfu.ca
S. Shelah
Affiliation:
Institute of Mathematics, The Hebrew University, Jerusalem, Israel, E-mail: shelah@math.huji.ac.il
Corresponding

Extract

Let κ be an uncountable cardinal and the edges of a complete graph with κ vertices be colored with ℵ0 colors. For the Erdős-Rado theorem implies that there is an infinite monochromatic subgraph. However, if , then it may be impossible to find a monochromatic triangle. This paper is concerned with the latter situation. We consider the types of colorings of finite subgraphs that must occur when the edges of the complete graph on vertices are colored with ℵ0 colors. In particular, we are concerned with the case ℵ1κ ≤ ℵω.

The study of these color patterns (known as identities) has a history that involves the existence of compactness theorems for two cardinal models [2]. When the graph being colored has size ℵ1, the identities that must occur have been classified by Shelah [4]. If the graph has size greater than or equal to ℵω the identities have also been classified in [3]. The number of colors is fixed at ℵ0 as it is the natural place to start and the results here can be generalized to situations where more colors are used.

There is one difference that we now make explicit. When countably many colors are used we can define the following coloring of the complete graph on vertices. First consider the branches in the complete binary tree of height ω to be vertices of a complete graph.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1996

Access options

Get access to the full version of this content by using one of the access options below.

References

[1]Baumgartner, J. M., Almost-disjoint sets, Annals of Mathematical Logic, vol. 10 (1976), pp. 401439.CrossRefGoogle Scholar
[2]Schmerl, J., Transfer theorems and their applications to logics, Model theoretic logics, 1985, pp. 177209.Google Scholar
[3]Shelah, S., A two cardinal theorem and a combinatorial theorem, Proceedings of the American Mathematical Society, vol. 62 (1977), no. 1, pp. 134136.CrossRefGoogle Scholar
[4]Shelah, S., Appendix to models with second order properties II, Annals of Mathematical Logic, vol. 14 (1978), pp. 223226.CrossRefGoogle Scholar
[5]Shelah, S., Models with second order properties II, Annals of Mathematical Logic, vol. 14 (1978), pp. 7387.CrossRefGoogle Scholar
[6]Shelah, S. and Stanley, L., A theorem and some consistency results in partition calculus, Annals of Pure and Applied Logic, vol. 36 (1987), pp. 119152.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 5 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 24th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Identities on cardinals less than ℵω
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Identities on cardinals less than ℵω
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Identities on cardinals less than ℵω
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *