Skip to main content
×
Home
    • Aa
    • Aa

On the Σ2-theory of the upper semilattice of Turing degrees

  • Carl G. Jockusch (a1) and Theodore A. Slaman (a2)
Abstract

A first-order sentence Φ is Σ2 if there is a quantifier-free formula Θ such that Φ has the form . The Σ2-theory of a structure for a language ℒ is the set of Σ2-sentences of true in . It was shown independently by Lerman and Shore (see [Le, Theorem VII.4.4]) that the Σ2-theory of the structure = 〈D, ≤ 〉 is decidable, where D is the set of degrees of unsolvability and ≤ is the standard ordering of D. This result is optimal in the sense that the Σ3-theory of is undecidable, a result due to J. Schmerl. (For a proof, see [Le, Theorem VII.4.5]. As Lerman has pointed out, this proof should be corrected by defining θσ to be ∀1(x) rather than ∀x(ψ(x)σ1(x)).) Nonetheless, in this paper we extend the decidability result of Lerman and Shore by showing that the Σ2-theory of is decidable, where ⋃ is the least upper bound operator and 0 is the least degree. Of course ⋃ is definable in , but many interesting degree-theoretic results are expressible as Σ2-sentences in the language of but not as Σ2-sentences in the language of . For instance, Simpson observed that the Posner-Robinson cupping theorem could be used to show that for any nonzero degrees a, b, there is a degree g such that bag, and bg (see [PR, Corollary 6]). However, the Posner-Robinson technique does not seem to suffice to decide the Σ2-theory of . We introduce instead a new method for coding a set into the join of two other sets and use it to decide this theory.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[La] A. H. Lachlan , The elementary theory of recursively enumerable sets, Duke Mathematical Journal, vol. 35 (1968), pp. 123146.

[LS] M. Lerman and R. I. Soare , A decidable fragment of the elementary theory of the lattice of recursively enumerable sets, Transactions of the American Mathematical Society, vol. 257(1980), pp. 137.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Symbolic Logic
  • ISSN: 0022-4812
  • EISSN: 1943-5886
  • URL: /core/journals/journal-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 1 *
Loading metrics...

Abstract views

Total abstract views: 35 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 29th March 2017. This data will be updated every 24 hours.