[1]Ayad, M., ‘Points S-entiers des courbes elliptiques’, Manuscripta Math. 76(3–4) (1992), 305–324.
[2]Bang, A. S., ‘Taltheoretiske undersøgelser’, Tidskrift f. Math. 5 (1886), 70–80 and 130–137.
[3]Bilu, Yu., Hanrot, G. and Voutier, P. M., ‘Existence of primitive divisors of Lucas and Lehmer numbers’, J. reine angew. Math. 539 (2001), 75–122 With an appendix by M. Mignotte.
[4]Carmichael, R. D., ‘On the numerical factors of the arithmetic forms α ^{n}±β ^{n}’, Ann. of Math. (2) 15(1–4) (1913/14), 30–70.
[5]Chudnovsky, D. V. and Chudnovsky, G. V., ‘Sequences of numbers generated by addition in formal groups and new primality and factorization tests’, Adv. Appl. Math. 7(4) (1986), 385–434.
[6]Cornelissen, G. and Zahidi, K., ‘Elliptic divisibility sequences and undecidable problems about rational points’, J. reine angew. Math. 613 (2007), 1–33.
[7]Corrales-Rodrigáñez, C. and Schoof, R., ‘The support problem and its elliptic analogue’, J. Number Theory 64(2) (1997), 276–290.
[8]Dubner, H. and Keller, W., ‘New Fibonacci and Lucas primes’, Math. Comp. 68(225) (1999), 417–427, S1–S12.
[9]Edixhoven, B., ‘Rational torsion points on elliptic curves over number fields (after Kamienny and Mazur)’, Astérisque (227) (1995), Exp. No. 782, 4, 209–227. Séminaire Bourbaki, Vol. 1993/94.
[10]Einsiedler, M., Everest, G. and Ward, T., ‘Primes in elliptic divisibility sequences’, LMS J. Comput. Math. 4 (2001), 1–13 (electronic).
[11]Eisenträger, K. and Everest, G., ‘Descent on elliptic curves and Hilbert’s tenth problem’, Proc. Amer. Math. Soc. 137(6) (2009), 1951–1959.
[12]Elkies, N. D., ‘Distribution of supersingular primes’, Astérisque (198–200) (1992), 127–132.
[13]Everest, G., Ingram, P., Mahé, V. and Stevens, S., ‘The uniform primality conjecture for elliptic curves’, Acta Arith. 134(2) (2008), 157–181.
[14]Everest, G. and King, H., ‘Prime powers in elliptic divisibility sequences’, Math. Comp. 74(252) (2005), 2061–2071 (electronic).
[15]Everest, G., Mclaren, G. and Ward, T., ‘Primitive divisors of elliptic divisibility sequences’, J. Number Theory 118(1) (2006), 71–89.
[16]Everest, G., Miller, V. and Stephens, N., ‘Primes generated by elliptic curves’, Proc. Amer. Math. Soc. 132(4) (2004), 955–963 (electronic).
[17]Everest, G. and Ward, T., ‘Primes in divisibility sequences’, Cubo Mat. Educ. 3(2) (2001), 245–259.
[18]Flatters, A. and Ward, T., ‘Polynomial Zsigmondy theorems’, J. Algebra. 343 (2011), 138–142.
[20]Hindry, M. and Silverman, J. H., ‘The canonical height and integral points on elliptic curves’, Invent. Math. 93(2) (1988), 419–450.
[21]Ingram, P., ‘Elliptic divisibility sequences over certain curves’, J. Number Theory 123(2) (2007), 473–486.
[22]Ingram, P., ‘A quantitative primitive divisor result for points on elliptic curves’, J. Théor. Nombres Bordeaux 21(3) (2009), 609–634.
[23]Ingram, P. and Silverman, J. H., ‘Uniform estimates for primitive divisors in elliptic divisibility sequences’, in: Number Theory, Analysis and Geometry (In Memory of Serge Lang) (Springer, 2011), pp. 233–263.
[24]Lauter, K. and Stange, K. E., ‘The elliptic curve discrete logarithm problem and equivalent hard problems for elliptic divisibility sequences’, in: Selected Areas in Cryptography 2008, Lecture Notes in Computer Science, 5381 (Springer, Berlin, 2009), pp. 309–327.
[25]Luca, F. and Stănică, P., ‘Prime divisors of Lucas sequences and a conjecture of Skałba’, Int. J. Number Theory 1(4) (2005), 583–591.
[26]Mahé, V., ‘Prime power terms in elliptic divisibility sequences’, Preprint, January 2010.
[27]Neukirch, J., Algebraic Number Theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 322 (Springer, Berlin, 1999), translated from the 1992 German original and with a note by Norbert Schappacher, with a foreword by G. Harder.
[28]Parent, P., ‘Bornes effectives pour la torsion des courbes elliptiques sur les corps de nombres’, J. reine angew. Math. 506 (1999), 85–116.
[29]Poonen, B., ‘Hilbert’s tenth problem and Mazur’s conjecture for large subrings of ℚ’, J. Amer. Math. Soc. 16(4) (2003), 981–990 (electronic).
[30]Schinzel, A., ‘Primitive divisors of the expression A ^{n}−B ^{n} in algebraic number fields’, J. reine angew. Math. 268/269 (1974), 27–33. Collection of articles dedicated to Helmut Hasse on his seventy-fifth birthday, II.
[31]Seres, I., ‘Über die Irreduzibilität gewisser Polynome’, Acta Arith. 8 (1962/63), 321–341.
[32]Seres, I., ‘Irreducibility of polynomials’, J. Algebra 2 (1965), 283–286.
[33]Serre, J.-P., ‘Propriétés galoisiennes des points d’ordre fini des courbes elliptiques’, Invent. Math. 15(4) (1972), 259–331.
[34]Serre, J.-P., ‘Quelques applications du théorème de densité de Chebotarev’, Publ. Math. Inst. Hautes Études Sci. 54 (1981), 323–401.
[35]Serre, J.-P., Abelian l-adic Representations and Elliptic Curves, Research Notes in Mathematics, 7 (A K Peters Ltd., Wellesley, MA, 1998).
[36]Shipsey, R., ‘Elliptic divisibility sequences’, PhD Thesis, Goldsmith’s College, University of London, 2000.
[37]Silverman, J. H., ‘Wieferich’s criterion and the abc-conjecture’, J. Number Theory 30(2) (1988), 226–237.
[38]Silverman, J. H., ‘The difference between the Weil height and the canonical height on elliptic curves’, Math. Comp. 55(192) (1990), 723–743.
[39]Silverman, J. H., Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, 151 (Springer, New York, 1994).
[40]Silverman, J. H., ‘Common divisors of elliptic divisibility sequences over function fields’, Manuscripta Math. 114(4) (2004), 431–446.
[41]Silverman, J. H., ‘p-adic properties of division polynomials and elliptic divisibility sequences’, Math. Ann. 332(2) (2005), 443–471, addendum 473–474.
[42]Silverman, J. H., The Arithmetic of Elliptic Curves, 2nd edn. Graduate Texts in Mathematics, 106 (Springer, Dordrecht, 2009).
[43]Silverman, J. H. and Stange, K. E., ‘Terms in elliptic divisibility sequences divisible by their indices’, Acta Arith. 146(4) (2011), 355–378.
[44]Silverman, J. H. and Stephens, N., ‘The sign of an elliptic divisibility sequence’, J. Ramanujan Math. Soc. 21(1) (2006), 1–17.
[45]Stange, K. E., ‘The Tate pairing via elliptic nets’, in: Pairing-based Cryptography—Pairing 2007, Lecture Notes in Computer Science, 4575 (Springer, Berlin, 2007), pp. 329–348.
[46]Stange, K. E., ‘Elliptic nets and elliptic curves’, Algebra Number Theory 5(2) (2011), 197–229.
[47]Stein, W. A.et al., Sage Mathematics Software (Version 4.6.2). The Sage Development Team. http://www.sagemath.org, 2011. [48]Stewart, C. L., ‘Primitive divisors of Lucas and Lehmer numbers’, in: Transcendence Theory: Advances and Applications (Proc. Conf., Univ. Cambridge, Cambridge, 1976) (Academic Press, London, 1977), pp. 79–92.
[49]Streng, M., ‘Divisibility sequences for elliptic curves with complex multiplication’, Algebra Number Theory 2(2) (2008), 183–208.
[50]Voutier, P. M., ‘Primitive divisors of Lucas and Lehmer sequences’, Math. Comp. 64(210) (1995), 869–888.
[51]Voutier, P. M. and Yabuta, M., ‘Primitive divisors of certain elliptic divisibility sequences’, arXiv:1009.0872, 2010.
[52]Wagstaff, S. S. Jr., ‘Divisors of Mersenne numbers’, Math. Comp. 40(161) (1983), 385–397.
[53]Ward, M., ‘The law of repetition of primes in an elliptic divisibility sequence’, Duke Math. J. 15 (1948), 941–946.
[54]Ward, M., ‘Memoir on elliptic divisibility sequences’, Amer. J. Math. 70 (1948), 31–74.
[55]Watson, G. N., ‘The problem of the square pyramid’, Messenger of Math. 48 (1918), 1–22.
[56]Zimmer, H. G., ‘On the difference of the Weil height and the Néron-Tate height’, Math. Z. 147(1) (1976), 35–51.
[57]Zsigmondy, K., ‘Zur Theorie der Potenzreste’, Monatsh. Math. Phys. 3(1) (1892), 265–284.