Skip to main content


  • PABLO ROCHA (a1)

We study the boundedness from $H^{p(\cdot )}(\mathbb{R}^{n})$ into $L^{q(\cdot )}(\mathbb{R}^{n})$ of certain generalized Riesz potentials and the boundedness from $H^{p(\cdot )}(\mathbb{R}^{n})$ into $H^{q(\cdot )}(\mathbb{R}^{n})$ of the Riesz potential, both results are achieved via the finite atomic decomposition developed in Cruz-Uribe and Wang [‘Variable Hardy spaces’, Indiana University Mathematics Journal 63(2) (2014), 447–493].

Hide All
[1] Capone, C., Cruz-Uribe, D. and Fiorenza, A., ‘The fractional maximal operator and fractional integrals on variable L p spaces’, Rev. Mat. Iberoam. 23(3) (2007), 743770.
[2] Cruz-Uribe, D. and Fiorenza, A., Variable Lebesgue Spaces, Foundations and Harmonic Analysis (Birkhäuser, Basel, 2013).
[3] Cruz-Uribe, D., Martell, J. M. and Pérez, C., Weights, Extrapolation and the Theory of Rubio de Francia (Birkhäuser, Basel, 2011).
[4] Cruz-Uribe, D. and Wang, D., ‘Variable Hardy spaces’, Indiana Univ. Math. J. 63(2) (2014), 447493.
[5] Diening, L., ‘Maximal function on Musielak–Orlicz spaces and generalized Lebesgue spaces’, Bull. Sci. Math. 129(8) (2005), 657700.
[6] Diening, L., Harjulehto, P., Hästö, P. and Ruzicka, M., Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, 2017 (Springer, Berlin–Heidelberg, 2011).
[7] Fefferman, C. and Stein, E. M., ‘ H p spaces of several variables’, Acta Math. 129(3–4) (1972), 137193.
[8] García-Cuerva, J. and Rubio de Francia, J. L., Weighted Norm Inequalities and Related Topics (North-Holland, Amsterdam, New York, Oxford, 1985).
[9] de Guzmán, M., Real Variable Methods in Fourier Analysis (North-Holland, Amsterdam–New York–Oxford, 1981).
[10] Lerner, A. K., Ombrosi, S. and Pérez, C., ‘Sharp A1 bounds for Calderón–Zygmund operators and the relationship with a problem of Muckenhoupt and Wheeden’, Int. Math. Res. Not. IMRN 6 (2008), Article ID rnm161, 11 pp.
[11] Lu, S. Z., Four Lectures on Real H p Spaces (World Scientific Publishing Co. Pte. Ltd, Singapore, 1995).
[12] Muckenhoupt, B., ‘Weighted norm inequalities for the Hardy maximal function’, Trans. Amer. Math. Soc. 165 (1972), 207226.
[13] Muckenhoupt, B. and Wheeden, R. L., ‘Weighted norm inequalities for fractional integrals’, Trans. Amer. Math. Soc. 192 (1974), 261274.
[14] Nakai, E., ‘Recent topics of fractional integrals’, Sugaku Expositions 20(2) (2007), 215235.
[15] Nakai, E. and Sawano, Y., ‘Hardy spaces with variable exponents and generalized Campanato spaces’, J. Funct. Anal. 262 (2012), 36653748.
[16] Riveros, S. and Urciuolo, M., ‘Weighted inequalities for integral operators with some homogeneous kernels’, Czechoslovak Math. J. 55(2) (2005), 423432.
[17] Rocha, P. and Urciuolo, M., ‘On the H p - L q boundedness of some fractional integral operators’, Czechoslovak Math. J. 62(3) (2012), 625635.
[18] Rocha, P. and Urciuolo, M., ‘Fractional type integral operators on variable Hardy spaces’, Acta Math. Hungar. 143(2) (2014), 502514.
[19] Sawano, Y., ‘Atomic decompositions of Hardy spaces with variable exponents and its application to bounded linear operators’, Integral Equations Operator Theory 77 (2013), 123148.
[20] Stein, E. M., Harmonic Analysis, Real-Variable Methods, Orthogonality, and Oscillatory Integrals (Princeton University Press, Princeton, NJ, 1993).
[21] Strömberg, J. O. and Torchinsky, A., Weighted Hardy Spaces, Lecture Notes in Mathematics, 131 (Springer, Berlin, 1989).
[22] Taibleson, M. H. and Weiss, G., ‘The molecular characterization of certain Hardy spaces’, Astérisque 77 (1980), 67149.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Australian Mathematical Society
  • ISSN: 1446-7887
  • EISSN: 1446-8107
  • URL: /core/journals/journal-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed