Skip to main content Accesibility Help
×
×
Home

CHARACTERIZATIONS OF BMO AND LIPSCHITZ SPACES IN TERMS OF $A_{P,Q}$ WEIGHTS AND THEIR APPLICATIONS

  • DINGHUAI WANG (a1), JIANG ZHOU (a2) and ZHIDONG TENG (a3)
Abstract

Let $0<\unicode[STIX]{x1D6FC}<n,1\leq p<q<\infty$ with $1/p-1/q=\unicode[STIX]{x1D6FC}/n$ , $\unicode[STIX]{x1D714}\in A_{p,q}$ , $\unicode[STIX]{x1D708}\in A_{\infty }$ and let $f$ be a locally integrable function. In this paper, it is proved that $f$ is in bounded mean oscillation $\mathit{BMO}$ space if and only if

$$\begin{eqnarray}\sup _{B}\frac{|B|^{\unicode[STIX]{x1D6FC}/n}}{\unicode[STIX]{x1D714}^{p}(B)^{1/p}}\bigg(\int _{B}|f(x)-f_{\unicode[STIX]{x1D708},B}|^{q}\unicode[STIX]{x1D714}(x)^{q}\,dx\bigg)^{1/q}<\infty ,\end{eqnarray}$$
where $\unicode[STIX]{x1D714}^{p}(B)=\int _{B}\unicode[STIX]{x1D714}(x)^{p}\,dx$ and $f_{\unicode[STIX]{x1D708},B}=(1/\unicode[STIX]{x1D708}(B))\int _{B}f(y)\unicode[STIX]{x1D708}(y)\,dy$ . We also show that $f$ belongs to Lipschitz space $Lip_{\unicode[STIX]{x1D6FC}}$ if and only if
$$\begin{eqnarray}\sup _{B}\frac{1}{\unicode[STIX]{x1D714}^{p}(B)^{1/p}}\bigg(\int _{B}|f(x)-f_{\unicode[STIX]{x1D708},B}|^{q}\unicode[STIX]{x1D714}(x)^{q}\,dx\bigg)^{1/q}<\infty .\end{eqnarray}$$
As applications, we characterize these spaces by the boundedness of commutators of some operators on weighted Lebesgue spaces.

Copyright
Corresponding author
References
Hide All
[1] Bloom, S., ‘A commutator theorem and weighted BMO’, Trans. Amer. Math. Soc. 292 (1985), 103122.
[2] Chanillo, S., ‘A note on commutators’, Indiana Univ. Math. J. 31 (1982), 716.
[3] Coifman, R., Rochberg, R. and Weiss, G., ‘Factorization theorems for Hardy spaces in several variables’, Ann. of Math. (2) 103 (1976), 611635.
[4] Cruz-Uribe, D. and Fiorenza, A., ‘Endpoint estimates and weighted norm inequalities for commutators of fractional integrals’, Publ. Math. 47 (2003), 103131.
[5] Devore, R. A. and Sharpley, R. C., Maximal Functions Measuring Smoothness, Memoirs of the American Mathematical Society, 47 (American Mathematical Society, 1984).
[6] Ding, Y., ‘A characterization of BMO via commutators for some operators’, Northeast. Math. J. 13 (1997), 422432.
[7] Grafakos, L., Classical and Modern Fourier Analysis (Springer, New York, 2004).
[8] Hart, J. and Torres, R. H., ‘John–Nirenberg inequalities and weight invariant BMO spaces’, J. Geom. Anal. 1 (2018), 141.
[9] Ho, K.-P., ‘Characterization of BMO by a p weights and p-convexity’, Hiroshima Math. J. 41 (2011), 153165.
[10] Janson, S., Taibleson, M. and Weiss, G., ‘Elementary characterization of the Morrey–Campanato spaces’, Lect. Notes Math. 992 (1983), 101114.
[11] John, F. and Nirenberg, L., ‘On functions of bounded mean oscillation’, Comm. Pure Appl. Math. 2 (1961), 415426.
[12] Muckenhoupt, B., ‘Weighted norm inequalities for the Hardy maximal function’, Trans. Amer. Math. Soc. 165 (1972), 207226.
[13] Muckenhoupt, B. and Wheeden, R., ‘Weighted bounded mean oscillation and the Hilbert transform’, Studia Math. 54 (1975), 221237.
[14] Muckenhoupt, B. and Wheeden, R., ‘Weighted norm inequalities for fractional integrals’, Trans. Amer. Math. Soc. 192 (1974), 261274.
[15] Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals (Princeton, NJ, 1993).
[16] Wang, D. H., Zhou, J. and Teng, Z. D., ‘A note on Campanato spaces and their applications’, Math. Notes 103 (2018), 483489.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Australian Mathematical Society
  • ISSN: 1446-7887
  • EISSN: 1446-8107
  • URL: /core/journals/journal-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed