Skip to main content
×
Home
    • Aa
    • Aa
  • Access
  • Cited by 50
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Wang, Xiuyun Feng, Yanquan Zhou, Jinxin Wang, Jihui and Ma, Qiaoling 2016. Tetravalent half-arc-transitive graphs of order a product of three primes. Discrete Mathematics, Vol. 339, Issue. 5, p. 1566.


    Wang, Li Meng, Xianping and Du, Shaofei 2015. Primitive Permutation Representations of PSL(3, p) and Its Applications. Communications in Algebra, Vol. 43, Issue. 2, p. 357.


    Hujdurović, Ademir Kutnar, Klavdija and Marušič, Dragan 2014. Half-arc-transitive group actions with a small number of alternets. Journal of Combinatorial Theory, Series A, Vol. 124, p. 114.


    Li, Cai Heng Lu, Zai Ping and Pan, Jiangmin 2014. Finite vertex-primitive edge-transitive metacirculants. Journal of Algebraic Combinatorics, Vol. 40, Issue. 3, p. 785.


    Li, Cai Heng Pan, Jiangmin Song, Shu Jiao and Wang, Dianjun 2014. A characterization of a family of edge-transitive metacirculant graphs. Journal of Combinatorial Theory, Series B, Vol. 107, p. 12.


    Ghasemi, Mohsen 2013. CUBIC SYMMETRIC GRAPHS OF ORDER 10p3. Journal of the Korean Mathematical Society, Vol. 50, Issue. 2, p. 241.


    Kutnar, Klavdija Marušič, Dragan Šparl, Primož Wang, Ru-Ji and Xu, Ming-Yao 2013. Classification of half-arc-transitive graphs of order. European Journal of Combinatorics, Vol. 34, Issue. 7, p. 1158.


    Li, Cai Heng Song, Shu Jiao and Wang, Dian Jun 2013. A characterization of metacirculants. Journal of Combinatorial Theory, Series A, Vol. 120, Issue. 1, p. 39.


    Wang, Xiuyun and Feng, Yan-Quan 2012. Tetravalent half-edge-transitive graphs and non-normal Cayley graphs. Journal of Graph Theory, Vol. 70, Issue. 2, p. 197.


    Feng, Yan-Quan Kwak, Jin Ho Wang, Xiuyun and Zhou, Jin-Xin 2011. Tetravalent half-arc-transitive graphs of order 2pq. Journal of Algebraic Combinatorics, Vol. 33, Issue. 4, p. 543.


    Kutnar, Klavdija Marušič, Dragan and Šparl, Primož 2010. An infinite family of half-arc-transitive graphs with universal reachability relation. European Journal of Combinatorics, Vol. 31, Issue. 7, p. 1725.


    Šparl, Primož 2010. Almost all quartic half-arc-transitive weak metacirculants of Class II are of Class IV. Discrete Mathematics, Vol. 310, Issue. 12, p. 1737.


    Wang, Xiuyun and Feng, Yan-Quan 2010. There exists no tetravalent half-arc-transitive graph of order <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mn>2</mml:mn><mml:msup><mml:mrow><mml:mi>p</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math>. Discrete Mathematics, Vol. 310, Issue. 12, p. 1721.


    Kutnar, Klavdija and Marušič, Dragan 2009. Hamilton cycles and paths in vertex-transitive graphs—Current directions. Discrete Mathematics, Vol. 309, Issue. 17, p. 5491.


    Šparl, Primož 2009. On the classification of quartic half-arc-transitive metacirculants. Discrete Mathematics, Vol. 309, Issue. 8, p. 2271.


    Wang, Xiuyun and Feng, Yan-Quan 2009. Hexavalent half-arc-transitive graphs of order <mml:math altimg="si20.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mn>4</mml:mn><mml:mi>p</mml:mi></mml:math>. European Journal of Combinatorics, Vol. 30, Issue. 5, p. 1263.


    Feng, Yan-Quan Kwak, Jin Ho Xu, Ming-Yao and Zhou, Jin-Xin 2008. Tetravalent half-arc-transitive graphs of order <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msup><mml:mrow><mml:mi>p</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msup></mml:math>. European Journal of Combinatorics, Vol. 29, Issue. 3, p. 555.


    Marušič, Dragan and Šparl, Primož 2008. On quartic half-arc-transitive metacirculants. Journal of Algebraic Combinatorics, Vol. 28, Issue. 3, p. 365.


    Šparl, Primož 2008. A classification of tightly attached half-arc-transitive graphs of valency 4. Journal of Combinatorial Theory, Series B, Vol. 98, Issue. 5, p. 1076.


    Zhou, JinXin and Feng, YanQuan 2008. Cubic one-regular graphs of order twice a square-free integer. Science in China Series A: Mathematics, Vol. 51, Issue. 6, p. 1093.


    ×
  • Currently known as: Journal of the Australian Mathematical Society Title history
    Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics, Volume 56, Issue 3
  • June 1994, pp. 391-402

Constructing graphs which are ½-transitive

  • Brian Alspach (a1), Dragan Marušič (a2) and Lewis Nowitz (a3)
  • DOI: http://dx.doi.org/10.1017/S1446788700035564
  • Published online: 01 April 2009
Abstract
Abstract

An infinite family of vertex-and edge-transitive, but not arc-transitive, graphs of degree 4 is constructed.

    • Send article to Kindle

      To send this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Constructing graphs which are ½-transitive
      Your Kindle email address
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Constructing graphs which are ½-transitive
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Constructing graphs which are ½-transitive
      Available formats
      ×
Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1]B. Alspach and T. D. Parsons , ‘A construction for vertex-transitive graphs’, Canad. J. Math. 34 (1982), 307318.

[4]I. Z. Bouwer , ‘Vertex and edge-transitive but not 1-transitive graphs’, Canad. Math. Bull. 13 (1970), 231237.

[5]Y. Cheng and J. Oxley , ‘On weakly symmetric graphs of order twice a prime’, J. Combin. Theory Ser. B 42 (1987), 196211.

[6]J. Folkman , ‘Regular line-symmetric graphs’, J. Combin. Theory 3 (1967), 215232.

[7]D. F. Holt , ‘A graph which is edge-transitive but not arc-transitive’, J. Graph Theory 5 (1981), 201204.

[14]J. Turner , ‘Point symmetric graphs with a prime number of points’, J. Combin. Theory 3 (1967), 136145.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Australian Mathematical Society
  • ISSN: 1446-7887
  • EISSN: 1446-8107
  • URL: /core/journals/journal-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords: