Skip to main content



We establish existence of weighted Hardy and Rellich inequalities on the spaces $L_{p}(\unicode[STIX]{x1D6FA})$ , where $\unicode[STIX]{x1D6FA}=\mathbf{R}^{d}\backslash K$ with $K$ a closed convex subset of $\mathbf{R}^{d}$ . Let $\unicode[STIX]{x1D6E4}=\unicode[STIX]{x2202}\unicode[STIX]{x1D6FA}$ denote the boundary of $\unicode[STIX]{x1D6FA}$ and $d_{\unicode[STIX]{x1D6E4}}$ the Euclidean distance to $\unicode[STIX]{x1D6E4}$ . We consider weighting functions $c_{\unicode[STIX]{x1D6FA}}=c\circ d_{\unicode[STIX]{x1D6E4}}$ with $c(s)=s^{\unicode[STIX]{x1D6FF}}(1+s)^{\unicode[STIX]{x1D6FF}^{\prime }-\unicode[STIX]{x1D6FF}}$ and $\unicode[STIX]{x1D6FF},\unicode[STIX]{x1D6FF}^{\prime }\geq 0$ . Then the Hardy inequalities take the form

$$\begin{eqnarray}\int _{\unicode[STIX]{x1D6FA}}c_{\unicode[STIX]{x1D6FA}}|\unicode[STIX]{x1D6FB}\unicode[STIX]{x1D711}|^{p}\geq b_{p}\int _{\unicode[STIX]{x1D6FA}}c_{\unicode[STIX]{x1D6FA}}\,d_{\unicode[STIX]{x1D6E4}}^{-p}|\unicode[STIX]{x1D711}|^{p}\end{eqnarray}$$
and the Rellich inequalities are given by
$$\begin{eqnarray}\int _{\unicode[STIX]{x1D6FA}}|H\unicode[STIX]{x1D711}|^{p}\geq d_{p}\int _{\unicode[STIX]{x1D6FA}}|c_{\unicode[STIX]{x1D6FA}}\,d_{\unicode[STIX]{x1D6E4}}^{-2}\unicode[STIX]{x1D711}|^{p}\end{eqnarray}$$
with $H=-\text{div}(c_{\unicode[STIX]{x1D6FA}}\unicode[STIX]{x1D6FB})$ . The constants $b_{p},d_{p}$ depend on the weighting parameters $\unicode[STIX]{x1D6FF},\unicode[STIX]{x1D6FF}^{\prime }\geq 0$ and the Hausdorff dimension of the boundary. We compute the optimal constants in a broad range of situations.

Hide All
[Avk15a] Avkhadiev, F. G., ‘Sharp constants in Hardy type inequalities’, Izv. Vyssh. Uchebn. Zaved. Mat. 2 (2015), 6165.
[Avk15b] Avkhadiev, F. G., ‘Hardy type L p -inequalities in r-close-to-convex domains’, Izv. Vyssh. Uchebn. Zaved. Mat. 2 (2015), 8488.
[BEL15] Balinsky, A. A., Evans, W. D. and Lewis, R. L., The Analysis and Geometry of Hardy’s Inequality, Universitext (Springer, New York, 2015).
[BFT04] Barbatis, G., Filippas, S. and Tertikas, A., ‘A unified approach to improved L p Hardy inequalities’, Trans. Amer. Math. Soc. 356 (2004), 21692196.
[Dav95] Davies, E. B., ‘The Hardy constant’, Q. J. Math. 46 (1995), 417431.
[DH98] Davies, E. B. and Hinz, A. M., ‘Explicit constants for Rellich inequalities in L p (𝛺)’, Math. Z. 227 (1998), 511523.
[EG92] Evans, L. C. and Gariepy, R. F., Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics (CRC Press, Boca Raton, FL, 1992).
[Hör94] Hörmander, L., Notions of Convexity, Progress in Mathematics, 127 (Birkhäuser, Boston–Basel–Berlin, 1994).
[LR16] Lehrbäck, J. and Robinson, D. W., ‘Uniqueness of diffusion on domains with rough boundaries’, Nonlinear Anal. Theory Methods Appl. 131 (2016), 6080.
[LV16] Lehrbäck, J. and Vähäkangas, A. V., ‘In between the inequalities of Sobolev and Hardy’, J. Funct. Anal. 271 (2016), 330364.
[MSS15] Metafune, G., Sobajima, M. and Spina, C., ‘Weighted Calderón–Zygmund and Rellich inequalities in L p ’, Math. Ann. 361 (2015), 313366.
[Rob18] Robinson, D. W., ‘Hardy inequalities, Rellich inequalities and local Dirichlet forms’, J. Evol. Equ. 18 (2018), 15211541.
[RS10] Robinson, D. W. and Sikora, A., ‘Degenerate elliptic operators in one dimension’, J. Evol. Equ. 10 (2010), 731759.
[Sim11] Simon, B., Convexity: An Analytic Viewpoint, Cambridge Tracts in Mathematics, 187 (Cambridge University Press, Cambridge, 2011).
[SSW03] Secchi, S., Smets, D. and Willem, M., ‘Remarks on a Hardy–Sobolev inequality’, C. R. Acad. Sci. Paris Sér. I 336 (2003), 811815.
[War14] Ward, A. D., ‘On essential self-adjointness, confining potentials and the -Hardy inequality’, PhD Thesis, Massey University, Albany, New Zealand, 2014,
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Australian Mathematical Society
  • ISSN: 1446-7887
  • EISSN: 1446-8107
  • URL: /core/journals/journal-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed