Hostname: page-component-7dd5485656-bt4hw Total loading time: 0 Render date: 2025-10-23T18:54:58.583Z Has data issue: false hasContentIssue false

ON THE DYNAMICS OF ENDOMORPHISMS OF THE DIRECT PRODUCT OF TWO FREE GROUPS

Published online by Cambridge University Press:  17 October 2025

ANDRÉ CARVALHO*
Affiliation:
Centro de Matemática, Faculdade de Ciências da Universidade do Porto , R. Campo Alegre s/n 4169-007 Porto, Portugal

Abstract

We prove that Brinkmann’s problems are decidable for endomorphisms of $F_n\times F_m$: given $(x,y),(z,w)\in F_n\times F_m$ and $\Phi \in \mathrm {End}(F_n\times F_m)$, it is decidable whether there is some $k\in \mathbb {N}$ such that $(x,y)\Phi ^k=(z,w)$ (or $(x,y)\Phi ^k\sim (z,w)$). We also prove decidability of a two-sided version of Brinkmann’s conjugacy problem for injective endomorphisms which, from the work of Logan, yields a solution to the conjugacy problem in ascending HNN-extensions of $F_n\times F_m$. Finally, we study the dynamics of automorphisms of $F_n\times F_m$ at the infinity, proving that that their dynamics at the infinity is asymptotically periodic, as occurs in the free and free-abelian times free cases.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

This work is funded by national funds through the FCT - Fundação para a Ciência e a Tecnologia, I.P., under the scope of the projects UIDB/00297/2020 and UIDP/00297/2020 (Center for Mathematics and Applications).

Communicated by Benjamin Martin

References

Araújo, V. and Silva, P. V., ‘Hölder conditions for endomorphisms of hyperbolic groups’, Comm. Algebra 44(10) (2016), 44834503.10.1080/00927872.2015.1094480CrossRefGoogle Scholar
Bestvina, M. and Handel, M., ‘Train tracks and automorphisms of free groups’, Ann. of Math. (2) 135 (1992), 151.10.2307/2946562CrossRefGoogle Scholar
Bogopolski, O., Martino, A., Maslakova, O. and Ventura, E., ‘The conjugacy problem is solvable in free-by-cyclic groups’, Bull. Lond. Math. Soc. 38 (2006), 787794.10.1112/S0024609306018674CrossRefGoogle Scholar
Bowditch, B. H., ‘Notes on Gromov’s hyperbolicity criterion for path-metric spaces’, in: Group Theory from a Geometrical Viewpoint (eds. Verjovsky, A., Ghys, E. and Haefliger, A.) (World Scientific, River Edge, NJ, 1991), 64167.Google Scholar
Bowditch, B. H., ‘Coarse median spaces and groups’, Pacific J. Math. 261(1) (2013), 5393.10.2140/pjm.2013.261.53CrossRefGoogle Scholar
Bowditch, B. H., ‘Median algebras’, Preprint, 2022, available at http://homepages.warwick.ac.uk/masgak/papers/median-algebras.pdf.Google Scholar
Brinkmann, P., ‘Detecting automorphic orbits in free groups’, J. Algebra 324(5) (2010), 10831097.10.1016/j.jalgebra.2010.05.032CrossRefGoogle Scholar
Carvalho, A., ‘On the dynamics of extensions of free-abelian times free groups endomorphisms to the completion’, Proc. Edinb. Math. Soc. (2) 65(3) (2022), 705735.10.1017/S001309152200030XCrossRefGoogle Scholar
Carvalho, A., ‘On uniformly continuous endomorphisms of hyperbolic groups’, J. Algebra 602 (2022), 197223.10.1016/j.jalgebra.2022.02.022CrossRefGoogle Scholar
Carvalho, A., ‘On endomorphisms of the direct product of two free groups’, J. Group Theory 26(4) (2023), 693724.Google Scholar
Carvalho, A., ‘On generalized conjugacy and some related problems’, Comm. Algebra 51(8) (2023), 35283542.10.1080/00927872.2023.2186132CrossRefGoogle Scholar
Carvalho, A., ‘On the intersection of fixed subgroups of ${F}_n\times {F}_m$ ’, Preprint, 2023, arXiv:2306.12533.Google Scholar
Carvalho, A., ‘Quantifying orbit detection: $\varphi$ -order and $\varphi$ -spectrum’, J. Algebra 662 (2025), 568588.10.1016/j.jalgebra.2024.08.023CrossRefGoogle Scholar
Carvalho, A. and Delgado, J., ‘Decidability of the Brinkmann problems for endomorphisms of the free group’, Arch. Math. (Basel) 123 (2024), 233240.10.1007/s00013-024-02029-2CrossRefGoogle Scholar
Carvalho, A. and Delgado, J., ‘Orbit problems for free-abelian times free groups and related families’, J. Algebra Appl., to appear.Google Scholar
Cassaigne, J. and Silva, P. V., ‘Infinite periodic points of endomorphisms over special confluent rewriting systems’, Ann. Inst. Fourier 59(2) (2009), 769810.10.5802/aif.2447CrossRefGoogle Scholar
Cassaigne, J. and Silva, P. V., ‘Infinite words and confluent rewriting systems: endomorphism extensions’, Internat. J. Algebra Comput. 19(4) (2009), 443490.10.1142/S0218196709005111CrossRefGoogle Scholar
Chatterji, I., Fernós, T. and Iozzi, A., ‘The median class and superrigidity of actions on CAT(0) cube complexes’, J. Topol. 9(2) (2016), 349400.10.1112/jtopol/jtu025CrossRefGoogle Scholar
Delgado, J. and Ventura, E., ‘Algorithmic problems for free-abelian times free groups’, J. Algebra 263(1) (2013), 256283.10.1016/j.jalgebra.2013.04.033CrossRefGoogle Scholar
Dugundji, J., Topology (Allyn and Bacon, Inc., Boston, MA–London–Sydney, 1978); Reprinting of the 1966 original, Allyn and Bacon Series in Advanced Mathematics.Google Scholar
Fioravanti, E., ‘Roller boundaries for median spaces and algebras’, Algebr. Geom. Topol. 20(3) (2020), 13251370.10.2140/agt.2020.20.1325CrossRefGoogle Scholar
Fioravanti, E., ‘Coarse-median preserving automorphisms’, Geom. Topol. 28(1) (2024), 161266.10.2140/gt.2024.28.161CrossRefGoogle Scholar
Kannan, R. and Lipton, R., ‘Polynomial-time algorithm for the orbit problem’, J. Assoc. Comput. Mach. 33(4) (1986), 808821.10.1145/6490.6496CrossRefGoogle Scholar
Levitt, G., Gaboriau, D., Jaeger, A. and Lustig, M., ‘An index for counting fixed points of automorphisms of free groups’, Duke Math. J. 93 (1998), 425452.Google Scholar
Levitt, G. and Lustig, M., ‘Automorphisms of free groups have asymptotically periodic dynamics’, J. reine angew. Math. 619 (2008), 136.10.1515/CRELLE.2008.038CrossRefGoogle Scholar
Logan, A. D., ‘The conjugacy problem for ascending HNN-extensions of free groups’, Preprint, 2023, arXiv:2209.04357.Google Scholar
Mihailova, K. A., ‘The occurrence problem for direct products of groups’, Dokl. Acad. Nauk SSRR 119 (1958), 11031105.Google Scholar
Niblo, G. A., Wright, N. and Zhang, J., ‘A four point characterisation for coarse median spaces’, Groups Geom. Dyn. 13(3) (2019), 651662.10.4171/ggd/510CrossRefGoogle Scholar
Roller, M. A., ‘Poc sets, median algebras and group actions. An extended study of Dunwoody’s construction and Sageev’s theorem’, Preprint, 1998.Google Scholar
Sánchez, A. P. and Shapiro, M., ‘Growth in higher Baumslag–Solitar groups’, Geom. Dedicata 195 (2017), 7999.10.1007/s10711-017-0277-2CrossRefGoogle Scholar
Sapir, M. and Spakulová, I., ‘Almost all one-relator groups with at least three generators are residually finite’, J. Eur. Math. Soc. (JEMS) 13(2) (2011), 331343.10.4171/jems/255CrossRefGoogle Scholar
Silva, P. V., ‘Fixed points of endomorphisms over special confluent rewriting systems’, Monatsh. Math. 161(4) (2010), 417447.10.1007/s00605-009-0124-0CrossRefGoogle Scholar
Silva, P. V., ‘Fixed points of endomorphisms of virtually free groups’, Pacific J. Math. 263(1) (2013), 207240.10.2140/pjm.2013.263.207CrossRefGoogle Scholar
Stoll, M., ‘Rational and transcendental growth series for the higher Heisenberg groups’, Invent. Math. 126 (1996), 85109.10.1007/s002220050090CrossRefGoogle Scholar
Valiunas, M., ‘Negligibity of elliptic elements in ascending HNN-extensions of ${\mathbb{Z}}^m$ ’, Comm. Algebra 47(12) (2019), 51015120.10.1080/00927872.2019.1612417CrossRefGoogle Scholar
Ventura, E., ‘The multiple endo-twisted conjugacy problem is solvable in finitely generated free groups’, Preprint, 2021, available at https://enric-ventura.staff.upc.edu/ventura/files/68t.pdf.Google Scholar
Willard, S., General Topology (Addison-Wesley, Reading, MA, 1970).Google Scholar