Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-28T11:36:37.606Z Has data issue: false hasContentIssue false

On the uniform Kadec-Klee property with respect to convergence in measure

Published online by Cambridge University Press:  09 April 2009

F. A. Sukochev
Affiliation:
Department of Mathematics and StatisticsThe Flinders UniversityG.P.O. Box 2100Adelaide, SA 5001Australia e-mail: sukochev@ist.flinders.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let E(0, ∞) be a separable symmetric function space, let M be a semifinite von Neumann algebra with normal faithful semifinite trace μ, and let E(M, μ) be the symmetric operator space associated with E(0, ∞). If E(0, ∞) has the uniform Kadec-Klee property with respect to convergence in measure then E(M, μ) also has this property. In particular, if LΦ(0, ∞) (ϕ(0, ∞)) is a separable Orlicz (Lorentz) space then LΦ(M, μ) (Λϕ (M, μ)) has the uniform Kadec-Klee property with respect to convergence in measure on sets of finite measure if and only if the norm of E(0, ∞) satisfies G. Birkhoff's condition of uniform monotonicity.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1995

References

[1]Akcoglu, M. A. and Sucheston, L., ‘La monotonicité uniforme des normes et théorèmes ergodiques’, C. R. Acad. Sc. Paris, t. 301, Serie I, N 7 (1985), 359360.Google Scholar
[2]Birkhoff, G., Lattice theory, A.M.S. Colloquium Publications, XXV, 3rd edition, (Amer. Math. Soc., Providence, 1967).Google Scholar
[3]Dodds, P. G., Dodds, T. K., Dowling, P. N., Lennard, C. J. and Sukochev, F. A., ‘A uniform Kadec-Klee property for symmetric operator spaces’, Math. Proc. Cambridge Philos. Soc., to appear.Google Scholar
[4]van Dulst, D. and de Valk, V., ‘(KK) properties, normal structure and fixed points of nonexpansive mapping in Orlicz sequence spaces’, Canad. J. Math. 38 (1986), 728750.Google Scholar
[5]Fack, T. and Kosaki, H., ‘Generalized σ-numbers of τ-measurable operators’, Pacific J. Math. 123 (1986), 269300.CrossRefGoogle Scholar
[6]Hsu, Y.-P., ‘The lifting of the U K K property from E to C E’, (1993), preprint.Google Scholar
[7]Kosaki, H., ‘Applications of uniform convexity of noncommutative L p-spaces’, Trans. Amer. Math. Soc. 283 (1984), 265282.Google Scholar
[8]Krein, S. G., Petunin, Ju. I. and Semenov, E. M., Interpolation of linear operators, Translation of Mathematical Monographs 54 (Amer. Math. Soc., 1982).Google Scholar
[9]Krygin, A. V., Sukochev, F. A. and Sheremetjev, V. E., ‘Convergence by measure, weak convergence and structure of subspaces in the symmetric spaces of measurable operators’, Dep. VINITI N2487-B92, 1–34(Russian).Google Scholar
[10]Lindenstrauss, J. and Tzafriri, L., Classical Banach spaces, I. Sequence spaces (Springer, Berlin, 1977).Google Scholar
[11]Lindenstrauss, J. and Tzafriri, L., Classical Banach spaces, II. Function spaces (Springer, Berlin, 1979).Google Scholar
[12]Novikov, S. Y., ‘Type and cotype of Lorentz function spaces’, Mat. zametki 32 (2) (1982), 213221.Google Scholar
[13]Novinger, W. P., ‘Mean convergence in L p-spacesProc. Amer. Math. Soc. 34 (1972), 627628.Google Scholar
[14]Sedaev, A. A., ‘On (H)-property in the symmetric spaces’, Teoriya funkcii, funkc. anal. i prilozenia 11 (1970), 6780 (Russian).Google Scholar
[15]Sedaev, A. A., ‘On weak and norm convergence in interpolation spaces’, Trudy 6 zimney shkoly po mat. programm. i smezn. voprosam, Moskow (1975), 245267. (Russian).Google Scholar
[16]Sukochev, F. A. and Chilin, V. I., ‘Convergence in measure in admissible non-commutative symmetric spaces’, Izv. Vyss. Uceb. Zaved. 9 (1990), 6370. (Russian).Google Scholar
[17]Takesaki, M., Theory of operator algebras I (Springer-Verlag, New York, 1979).Google Scholar