Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-28T14:37:51.913Z Has data issue: false hasContentIssue false

Optimal approximation by continued fractions

Published online by Cambridge University Press:  09 April 2009

Wieb Bosma
Affiliation:
Department of Pure Mathematics University of SydneySydney, NSW 2006, Australia
Cor Kraaikamp
Affiliation:
Fakulteit Wiskunde en Informatika Universiteit van AmsterdamPlantage Muidergracht 24 1018 TV Amsterdam, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Among all possible semiregular continued fraction expansions of an irrational number the one with the best approximation properties, in a well-defined and natural sense, is determined. Some properties of this so called optimal continued fraction expansion are described.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1991

References

[1]Bosma, W., ‘Optimal continued fractions’, Indag. Math. 49 (1987), 353379.CrossRefGoogle Scholar
[2]Bosma, W., Jager, H. and Wiedijk, F., ‘Some metrical observations on the approximation by continued fractions’, Indag. Math. 45 (1983), 281299.CrossRefGoogle Scholar
[3]Bosma, W. and Kraaikamp, C., ‘Metrical theory for optimal continued fractions’, J. Number Theory 34 (1990), 251270.CrossRefGoogle Scholar
[4]Jager, H. and Kraaikamp, C., ‘On the approximation by continued fractions’, Indag. Math. 51 (1989), 289307.CrossRefGoogle Scholar
[5]Keller, O.-H., ‘Eine Bemerkung zu den verschiedenen Möglichkeiten eine Zahl in einen Kettenbruch zu entwickeln’, Math. Ann. 116 (1939), 733741.Google Scholar
[5]Koksma, F., Diophantische Approximation, Springer, Berlin, 1936.Google Scholar
[7]Kraaikamp, C., ‘Statistic and ergodic properties of Minkowski's diagonal continued fraction’, Theoret. Comp. Sci. 65 (1989), 197212.CrossRefGoogle Scholar
[8]Perron, O., Die Lehre von den Kettenbrüchen, Chelsea, New York, 1929.Google Scholar
[9]Rieger, G. J., ‘Mischung und Ergodizität bei Kettenbrüchen nach nächsten Ganzen’, J. Reine Angew. Math. 310 (1979), 171181.Google Scholar
[10]Selenius, C.-O., ‘Konstruktion und Theorie halbregelmässiger Kettenbrüche mit idealer relativer Approximation’, Acta Acad. Aboensis Math. et Phys. XXII.2 (1960), 175.Google Scholar
[11]Selenius, C.-O., ‘Tafel der Kettenbrüche mit idealer Approximation für Quadratwurzeln aus natürlichen Zahlen’, Acta Acad. Aboensis Math. et Phys. XXII.10 (1960), 137.Google Scholar
[12]Tong, J., ‘The conjugate property of the Borel theorem on Diophantine approximation’, Math. Z. 184 (1983), 151153.Google Scholar