Skip to main content
×
Home
    • Aa
    • Aa

The Schur and (weak) Dunford-Pettis properties in Banach lattices

  • Anna Kamińska (a1) and Mieczysław Mastyło (a2)
Abstract
Abstract

We study the Schur and (weak) Dunford-Pettis properties in Banach lattices. We show that l1, c0 and l are the only Banach symmetric sequence spaces with the weak Dunford-Pettis property. We also characterize a large class of Banach lattices without the (weak) Dunford-Pettis property. In MusielakOrlicz sequence spaces we give some necessary and sufficient conditions for the Schur property, extending the Yamamuro result. We also present a number of results on the Schur property in weighted Orlicz sequence spaces, and, in particular, we find a complete characterization of this property for weights belonging to class ∧. We also present examples of weighted Orlicz spaces with the Schur property which are not L1-spaces. Finally, as an application of the results in sequence spaces, we provide a description of the weak Dunford-Pettis and the positive Schur properties in Orlicz spaces over an infinite non-atomic measure space.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The Schur and (weak) Dunford-Pettis properties in Banach lattices
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      The Schur and (weak) Dunford-Pettis properties in Banach lattices
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      The Schur and (weak) Dunford-Pettis properties in Banach lattices
      Available formats
      ×
Copyright
References
Hide All
[1]Abraniovich Y. A. and Wojtaszczyk P., ‘The uniqueness of the order in the spaces Lp[0,1] and lp’, Mat. Zametki 18 (1975), 313325 (in Russian).
[2]Aliprantis C. D. and Burkinshaw O., Positive operators (Academic Press, New York, 1985).
[3]Banerjee C. R. and Lahin B. K., ‘On subseries of divergent series’, Amer Math. Monthly 71 (1964), 767768.
[4]Bergh J. and Löfström J., Interpolation spaces. An introduction, Grundhlehren der Math. Wissen. 223 (Springer, Berlin, 1976).
[5]Davis W. J., Figiel T., Johnson W. B. and Pelczyński A., ‘Factoring weakly compact operators’, J. Funct. Anal. 17 (1974), 311327.
[6]Diestel J., ‘A survey of results related to the Dunford-Pettis property’, in: Proceedings of the Conference on Integration, Topology, and Geometry in Linear Spaces (Univ. North Carolina, Chapel Hill, N.C., 1979) (Amer. Math. Soc., Providence, R.I., 1980) pp. 1560.
[7]Drewnowski L., ‘F-spaces with a basis which is shrinking but not hyper-shrinking’, Studia Math. 64 (1979), 97104.
[8]Halperin I. and Nakano H., ‘Generalized lp-spaces and the Schur property’, J. Math. Soc. Japan 5 (1953), 5058.
[9]Hernández F. L. and Peirats V., ‘Weighted sequence subspaces of Orlicz function spaces isomorphic to lp’, Arch. Math. 50 (1988), 270280.
[10]Hernández F L. and Ruiz C., ‘On Musielak-Orlicz spaces isomorphic to Orlicz spaces’, Comment. Math. Prace Mat. 32 (1992), 5560.
[11]Hudzik H. and Kamińska A., ‘On uniformly convexifiable and B-convex Musielak-Orlicz spaces’, Comment. Math. Prace Mat. 25 (1985), 5975.
[12]Janson S., Nilsson P. and Peetre J., ‘Notes on Wolff's note on interpolation spaces’, Proc. London Math. Soc. 48 (1984), 283299.
[13]Johnson W. B., Maurey B., Schechtman O. and Tzafriri L., ‘Symmetric structures in Banach spaces’, Mem. Amer. Math. Soc. (217) 19 (1979).
[14]Kamińska A., ‘Indices, convexity and concavity in Musielak-Orlicz spaces’, Funct. Approx. Comment. Math. 26 (1998), 6784.
[15]Kamińska A. and Mastylo M., ‘The Dunford-Pettis property for symmetric spaces’, Canad. J. Math. 52 (2000), 789803.
[16]Kantorovich L. V. and Akilov O. P., Functional analysis, 2nd revised edition, (Nauka, Moscow, 1977). English translation: (Pergamon Press, Oxford, 1982).
[17]Katirtzoglou E., ‘Type and cotype in Musielak-Orlicz spaces’, J. Math. Anal. Appl. 226 (1998), 431455.
[18]Krasnoselskii M. A. and Rutickii Ya. B., Convexfunctions and Orlicz spaces (Nordhoff, Gromngen, 1961).
[19]Kre˘n S. O., Petunin Ju. I. and Semenov E. M., Interpolation of linear operators (Nauka, Moscow, 1978). English translation: (Amer. Math. Soc., Providence, R.I., 1982).
[20]Leung D., ‘On the weak Dunford-Pettis property’, Arch. Math. 52 (1989), 363364.
[21]Levy M., ‘L'espace d'interpolation réel (A0, A1)θ, p contient lp’, C. R. Acad. Sci. Paris 289 (1979), 675677.
[22]Lindenstrauss J. and Pelczyński A., ‘Absolutely summing operators in Lp-spaces and their applications’, Studia Math. 29 (1968), 275326.
[23]Lindenstrauss J. and Tzafriri L., Classical Banach spaces, Vol. I, II (Springer, Berlin, 1977, 1979).
[24]Maligranda L., ‘Indices and interpolation’, Disserrationes Math. (Rozprawy Mat.) 234 (1985), 49.
[25]Mastyło M., ‘The universal right K property for some interpolation spaces’, Studia Math. 90 (1988), 117128.
[26]Musielak J., Orlicz spaces and modular spaces (Springer, Berlin, 1983).
[27]Nielsen N. J., ‘On the Orlicz function spaces LM(0, ∞)’, Israel J. Math. 20 (1975), 237259.
[28]Novikov S. Ya., ‘Singularities of embedding operators between symmetric function spaces on [0,1]’, Math. Notes 62 (1997), 457468.
[29]Peirats V. and Ruiz C., ‘On lp-copies in Musielak-Orlicz sequence spaces’, Arch. Math. 58 (1992), 164173.
[30]Räbiger F., ‘Lower and upper 2-estimates for order bounded sequences and Dunford-Pettis operators between certain classes of Banach lattices’, in: Functional analysis (Austin, TX, 1987/1989), Lect. Notes in Math. 1470 (Springer, Berlin, 1991) pp. 159170.
[31]Sargent W. L. C., ‘Some sequence spaces related to the lp spaces’, J. London Math. Soc. 35 (1960), 161171.
[32]Wnuk W., ‘l(pn) spaces with the Dunford-Pettis property’, Comment. Math. Prace Mat. 30 (1991), 483489.
[33]Wnuk W., ‘Banach lattices with properties of the Schur type—a survey’, Confer Sem. Mar. Univ. Bari No. 249 (1993), 25 pages.
[34]Wnuk W., ‘Banach lattices with the weak Dunford-Pettis property’, Atti Sem. Mat. Fis. Univ. Modena 42 (1994), 227236.
[35]Woo J., ‘On modular sequence spaces’, Studia Math. 58 (1973), 271289.
[36]Yamamuro S., ‘Modulared sequence spaces’, J. Fac. Sci. Hokkaido Univ. Ser. I. 13 (1954), 112.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Australian Mathematical Society
  • ISSN: 1446-7887
  • EISSN: 1446-8107
  • URL: /core/journals/journal-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 47 *
Loading metrics...

Abstract views

Total abstract views: 56 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd October 2017. This data will be updated every 24 hours.