Skip to main content Accessibility help
×
Home
Hostname: page-component-5c569c448b-ckh7h Total loading time: 0.133 Render date: 2022-07-06T02:43:10.052Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

A SPECTRAL CHARACTERIZATION OF ${\mathcal{A}}{\mathcal{N}}$ OPERATORS

Published online by Cambridge University Press:  08 July 2016

SATISH K. PANDEY*
Affiliation:
Department of Pure Mathematics, University of Waterloo, Ontario, CanadaN2L 3G1 email satish.pandey@uwaterloo.ca
VERN I. PAULSEN
Affiliation:
Department of Pure Mathematics, University of Waterloo, Ontario, CanadaN2L 3G1 email vpaulsen@uwaterloo.ca
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We establish a spectral characterization theorem for the operators on complex Hilbert spaces of arbitrary dimensions that attain their norm on every closed subspace. The class of these operators is not closed under addition. Nevertheless, we prove that the intersection of these operators with the positive operators forms a proper cone in the real Banach space of hermitian operators.

Type
Research Article
Copyright
© 2016 Australian Mathematical Publishing Association Inc. 

References

Carvajal, X. and Neves, W., ‘Operators that achieve the norm’, Integral Equations Operator Theory 72(2) (2012), 179195.CrossRefGoogle Scholar
Halmos, P., A Hilbert Space Problem Book (Springer, New York, 1982).CrossRefGoogle Scholar
Kadison, R. V. and Ringrose, J. R., ‘Fundamentals of the theory of operator algebras’, in: Special Topics Volume III: Elementary theory—An Exercise Approach (Birkhäuser, Cambridge, MA, 1991).Google Scholar
Ramesh, G., ‘Structure theorem for -operators’, J. Aust. Math. Soc. 96(3) (2014), 386395.CrossRefGoogle Scholar
You have Access
10
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A SPECTRAL CHARACTERIZATION OF ${\mathcal{A}}{\mathcal{N}}$ OPERATORS
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

A SPECTRAL CHARACTERIZATION OF ${\mathcal{A}}{\mathcal{N}}$ OPERATORS
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

A SPECTRAL CHARACTERIZATION OF ${\mathcal{A}}{\mathcal{N}}$ OPERATORS
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *