Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-28T02:42:50.364Z Has data issue: false hasContentIssue false

CODIMENSION ONE FOLIATIONS IN POSITIVE CHARACTERISTIC

Published online by Cambridge University Press:  06 November 2023

Wodson Mendson
Affiliation:
IMPA, Estrada Dona Castorina, 110, Horto, 22460-320, Rio de Janeiro, Brasil (oliveirawodson@gmail.com)
Jorge Vitório Pereira*
Affiliation:
IMPA, Estrada Dona Castorina, 110, Horto, 22460-320, Rio de Janeiro, Brasil (oliveirawodson@gmail.com)

Abstract

We investigate the geometry of codimension one foliations on smooth projective varieties defined over fields of positive characteristic with an eye toward applications to the structure of codimension one holomorphic foliations on projective manifolds.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bucur, I., Houzel, C., Illusie, L., Jouanolou, J.-P. and Serre, J. -P., Cohomologie ℓ-adique et fonctions L:Seminaire de géométrie algébrique du Bois-Marie 1965-66 SGA 5 (Lecture Notes in Mathematics) vol. 589 (Berlin-Heidelberg-New York, Springer-Verlag 1977), 484 pp.Google Scholar
Flips and Abundance for Algebraic Threefolds (Astérisque) vol. 211 (Société Mathématique de France, Paris, 1992).Google Scholar
Abugaliev, R., Characteristic foliation on hypersurfaces with positive beauville-bogomolovfujiki square, 2021.Google Scholar
Bezrukavnikov, R. and Kaledin, D., Fedosov quantization in positive characteristic, J. Am. Math. Soc. 21(2) (2008), 409438 (English).CrossRefGoogle Scholar
Blickle, M. and Schwede, K., p −1- linear Maps in Algebra and Geometry (Commutative Algebra) (New York, NY: Springer, 2013), 123205 (English).Google Scholar
Bost, J.-B., Algebraic leaves of algebraic foliations over number fields, Publ. Math. Inst. Hautes Études Sci. 93 (2001), 161221.CrossRefGoogle Scholar
Brion, M. and Kumar, S., Frobenius Splitting Methods in Geometry and Representation Theory vol. 231 (Boston, MA: Birkhäuser, 2005) (English).CrossRefGoogle Scholar
Brunella, M., Birational Geometry of Foliations (IMPA Monographs) vol. 1 (Springer, Cham, 2015).CrossRefGoogle Scholar
Cartier, P., Une nouvelle opération sur les formes différentielles, C. R. Acad. Sci. Paris 244 (1957), 426428.Google Scholar
Cartier, P., Questions de rationalité des diviseurs en géométrie algébrique, Bull. Soc. Math. France 86 (1958), 177251.CrossRefGoogle Scholar
Cerveau, D. and Lins Neto, A., Irreducible components of the space of holomorphic foliations of degree two in $\mathbb{CP},$ n ≥ 3, Ann. of Math. (2) 143(3) (1996), 577612.CrossRefGoogle Scholar
Cerveau, D., Lins Neto, A. and Edixhoven, S. J., Pull-back components of the space of holomorphic foliations on $\mathbb{CP}(n)$ , n ≥ 3, J. Algebraic Geom. 10(4) (2001), 695711.Google Scholar
Cerveau, D., Lins Neto, A., Loray, F., Pereira, J. V. and Touzet, F., Complex codimension one singular foliations and Godbillon-Vey sequences, Mosc. Math. J. 7(1) (2007), 2154, 166.CrossRefGoogle Scholar
Chambert-Loir, A., Théorèmes d’algébricité en géométrie diophantienne (d’après J.-B. Bost, Y. André, D. & G. Chudnovsky) (Séminaire Bourbaki) vol. 2000/2001, no. 282 (2002) 886, viii, 175209.Google Scholar
Cukierman, F. and Pereira, J. V., Stability of holomorphic foliations with split tangent sheaf, Amer. J. Math. 130(2) (2008), 413439.CrossRefGoogle Scholar
Cukierman, F., Pereira, J. V. and Vainsencher, I., Stability of foliations induced by rational maps, Ann. Fac. Sci. Toulouse Math. (6) 18(4) (2009), 685715.CrossRefGoogle Scholar
da Costa, R. C., Lizarbe, R. and Pereira, J. V., Codimension one foliations of degree three on projective spaces, Bull. Sci. Math. 174(103092) (2022), 39.CrossRefGoogle Scholar
Deligne, P., Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 557.CrossRefGoogle Scholar
Déserti, J. and Cerveau, D., Feuilletages et actions de groupes sur les espaces projectifs, Mém. Soc. Math. Fr. (N.S.) 103 (2006), vi+124.Google Scholar
Druel, S., On foliations with nef anti-canonical bundle, Trans. Amer. Math. Soc. 369(11) (2017), 77657787.CrossRefGoogle Scholar
Gargiulo Acea, J., Logarithmic forms and singular projective foliations, Ann. Inst. Fourier (Grenoble) 70(1) (2020), 171203.CrossRefGoogle Scholar
Giraldo, L. and Pan-Collantes, A. J., On the singular scheme of codimension one holomorphic foliations in $\mathbb P^3$ , Internat. J. Math. 21(7) (2010), 843858.CrossRefGoogle Scholar
Grothendieck, A. and Murre, J. P., The Tame Fundamental Group of a Formal Neighbourhood of a Divisor with Normal Crossings on a Scheme (Lecture Notes in Mathematics) vol. 208 (Springer-Verlag, Berlin-New York, 1971).CrossRefGoogle Scholar
Grothendieck, A., Techniques de construction et théorèmes d’existence en géométrie algébrique. IV. Les schémas de Hilbert (Séminaire Bourbaki) vol. 6 (Soc. Math. France, Paris, 1995), 221, 249276.Google Scholar
Hartshorne, R., Algebraic Geometry, vol. 52 (Springer, New York, NY, 1977) (English).CrossRefGoogle Scholar
Hartshorne, R., Stable reflexive sheaves, Math. Ann. 254(2) (1980), 121176.CrossRefGoogle Scholar
Illusie, L., Frobenius et dégénérescence de Hodge, Introduction à la théorie de Hodge, Panor. Synthèses, vol. 3 (Soc. Math. France, Paris, 1996), 113168.Google Scholar
Katz, N. M., Nilpotent connections and the monodromy theorem: applications of a result of turrittin, Publications mathématiques Inst. Hautes Études Sci. 39 (1970), 175232.CrossRefGoogle Scholar
Kollár, J., Singularities of the Minimal Model Program (Cambridge Tracts in Mathematics) vol. 200 (Cambridge University Press, Cambridge, 2013). With a collaboration of Sándor Kovács.CrossRefGoogle Scholar
Loray, F., Pereira, J. V. and Touzet, F., Foliations with trivial canonical bundle on Fano 3-folds, Math. Nachr. 286(8–9) (2013), 921940.CrossRefGoogle Scholar
Loray, F., Singular foliations with trivial canonical class, Invent. Math. 213(3) (2018), 13271380.CrossRefGoogle Scholar
Loray, F., Deformation of rational curves along foliations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 21 (2020), 13151331.Google Scholar
Mendson, W., Folheações de codimensão um em característica positiva e aplicações , Ph.D. thesis, 2022, IMPA, 195.Google Scholar
Mendson, W., Foliations on smooth algebraic surfaces over positive characteristic, Preprint, 2022.CrossRefGoogle Scholar
Miyaoka, Y., Deformations of a morphism along a foliation and applications, in Algebraic Geometry, Bowdoin, 1985 (Proc. Sympos. Pure Math.) vol. 46 (Amer. Math. Soc., Providence, RI, 1987), 245268.CrossRefGoogle Scholar
Miyaoka, Y. and Peternell, T., Geometry of Higher Dimensional Algebraic Varieties vol. 26 (Springer, 1997).CrossRefGoogle Scholar
Patel, A., Shankar, A. N. and Whang, J. P., The rank two $p$ -curvature conjecture on generic curves, Adv. Math. 386(107800) (2021), 33.CrossRefGoogle Scholar
Pereira, J. V., Invariant hypersurfaces for positive characteristic vector fields, J. Pure Appl. Algebra 171(2–3) (2002), 295301.CrossRefGoogle Scholar
Pereira, J. V. and Touzet, F., Foliations with vanishing Chern classes, Bull. Braz. Math. Soc. (N.S.) 44(4) (2013), 731754.CrossRefGoogle Scholar
Seshadri, C. S., de Cartier, L’opération. Applications, Sém. C. Chevalley 4(6) (1958/59), 126.Google Scholar
Shankar, A. N., The $p$ -curvature conjecture and monodromy around simple closed loops, Duke Math. J. 167(10) (2018), 19511980.CrossRefGoogle Scholar
Spicer, C., Higher-dimensional foliated Mori theory, Compos. Math. 156(1) (2020), 138.CrossRefGoogle Scholar
The Stacks Project Authors, Stacks Project, 2018, https://stacks.math.columbia.edu.Google Scholar