Hostname: page-component-857557d7f7-v48vw Total loading time: 0 Render date: 2025-11-30T11:51:07.575Z Has data issue: false hasContentIssue false

DYNAMIQUE ANALYTIQUE SUR Z. I: MESURES D’ÉQUILIBRE SUR UNE DROITE PROJECTIVE RELATIVE

Published online by Cambridge University Press:  24 November 2025

Jérôme Poineau*
Affiliation:
LMNO, Université de Caen Normandie , France

Résumé

Considérons un espace de Berkovich sur un bon anneau de Banach et la droite projective relative sur celui-ci. (C’est un espace dont les fibres sont des droites projectives sur différents corps valués complets.) Pour tout endomorphisme polarisé de cette droite, nous montrons que la famille des mesures d’équilibre associées aux restrictions de l’endomorphisme aux fibres est continue. Le résultat vaut, par exemple, lorsque l’anneau de Banach est un corps valué complet, un corps hybride, un anneau de valuation discrète complet ou un anneau d’entiers de corps de nombres.

Abstract

Abstract

(Analytic dynamics over Z. I: Equilibrium measures on a relative projective line.) Consider a Berkovich space over a good Banach ring and the relative projective line over it. (It is a space whose fibers are projective lines over different complete valued fields.) For each polarized endomorphism of this line, we prove that the family of equilibrium measures associated to the restrictions of the endomorphism to the fibers is continuous. The result holds, in particular, when the Banach ring is a complete valued field, a hybrid field, a complete discrete valuation ring, or the ring of integers of a number field.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Références

Arakelov, SJ (1974) An intersection theory for divisors on an arithmetic surface. Izv. Akad. Nauk SSSR Ser. Mat. 38, 11791192.Google Scholar
Baker, M and Rumely, R (2010) Potential Theory and Dynamics on the Berkovich Projective Line, volume 159 of Mathematical Surveys and Monographs. Providence, RI: American Mathematical Society.10.1090/surv/159CrossRefGoogle Scholar
Bedford, E and Taylor, BA (1976) The Dirichlet problem for a complex Monge-Ampère equation. Invent. Math. 37, 144.10.1007/BF01418826CrossRefGoogle Scholar
Berkovich, VG (1990) Spectral Theory and Analytic Geometry over Non-Archimedean Fields, volume 33 of Mathematical Surveys and Monographs. Providence, RI: American Mathematical Society.Google Scholar
Bogomolov, F, Fu, H and Tschinkel, Y (2018) Torsion of elliptic curves and unlikely intersections. In Geometry and Physics, Volume I, pages 1937. Oxford: Oxford University Press.Google Scholar
Bombieri, E and Gubler, W (2006) Heights in Diophantine Geometry, volume 4 of New Mathematical Monographs. Cambridge: Cambridge University Press.Google Scholar
Boucksom, S and Jonsson, M (2017) Tropical and non-Archimedean limits of degenerating families of volume forms. J. Éc. Polytech. Math. 4, 87139.10.5802/jep.39CrossRefGoogle Scholar
Bourbaki, N (1971) Éléments de Mathématique. Topologie Générale. Chapitres 1 à 4. Paris: Hermann.Google Scholar
Bourbaki, N (1974) Éléments de Mathématique. Topologie Générale. Chapitres 5 à 10. Paris: Hermann.Google Scholar
Brolin, H (1965) Invariant sets under iteration of rational functions. Ark. Mat. 6, 103144.10.1007/BF02591353CrossRefGoogle Scholar
Chambert-Loir, A (2006) Mesures et équidistribution sur les espaces de Berkovich. J. Reine Angew. Math. 595, 215235.Google Scholar
Chambert-Loir, A and Ducros, A (2011) Formes Différentielles Réelles et Courants sur les Espaces de Berkovich. arXiv. https://arxiv.org/abs/1204.6277.Google Scholar
Ducros, A, Hrushovski, E and Loeser, F (2022) Non-Archimedean integrals as limits of complex integrals. Duke Math. J. (À paraître).Google Scholar
Favre, C (2020) Degeneration of endomorphisms of the complex projective space in the hybrid space. J. Inst. Math. Jussieu 19(4), 11411183.10.1017/S147474801800035XCrossRefGoogle Scholar
Favre, C and Jonsson, M (2004) The Valuative Tree, volume 1853 of Lecture Notes in Mathematics. Berlin: Springer-Verlag.10.1007/978-3-540-44646-0_16CrossRefGoogle Scholar
Favre, C and Rivera-Letelier, J (2004) Brolin’s equidistribution theorem in $p$ -adic dynamics. C. R., Math., Acad. Sci. Paris 339(4), 271276.10.1016/j.crma.2004.06.023CrossRefGoogle Scholar
Favre, C and Rivera-Letelier, J (2006) Équidistribution quantitative des points de petite hauteur sur la droite projective. Math. Ann. 335(2), 311361.10.1007/s00208-006-0751-xCrossRefGoogle Scholar
Favre, C and Rivera-Letelier, J (2010) Théorie ergodique des fractions rationnelles sur un corps ultramétrique. Proc. Lond. Math. Soc. (3) 100(1), 116154.10.1112/plms/pdp022CrossRefGoogle Scholar
Freire, A, Lopes, A and Mañe, R (1983) An invariant measure for rational maps. Bol. Soc. Bras. Mat. 14(1), 4562.10.1007/BF02584744CrossRefGoogle Scholar
Lemanissier, T and Poineau, J (2024) Espaces de Berkovich Globaux. Catégorie, topologie, cohomologie, volume 353 of Prog. Math. Cham: Birkhäuser.10.1007/978-3-031-56504-5CrossRefGoogle Scholar
Lyubich, MY (1983) Entropy properties of rational endomorphisms of the Riemann sphere. Ergodic Theory Dyn. Syst. 3, 351385.10.1017/S0143385700002030CrossRefGoogle Scholar
Mañé, R (1988) The Hausdorff dimension of invariant probabilities of rational maps. Dynamical Systems, Proc. Symp., Valparaiso/Chile 1986, Lect. Notes Math. 1331, 86117.10.1007/BFb0083068CrossRefGoogle Scholar
Pille-Schneider, L (2023) Global pluripotential theory on hybrid spaces. J. Éc. Polytech., Math. 10, 601658.10.5802/jep.228CrossRefGoogle Scholar
Poineau, J (2010) La droite de Berkovich sur $\mathbf{Z}$ . Astérisque 334, xii+284.Google Scholar
Poineau, J (2013) Espaces de Berkovich sur $\mathbf{Z}$ : étude locale. Invent. Math. 194(3), 535590.10.1007/s00222-013-0451-6CrossRefGoogle Scholar
Poineau, J (2022) Dynamique analytique sur $\mathbf{Z}$ . I: Mesures d’équilibre sur une droite projective relative. arXiv. https://arxiv.org/abs/2201.08480v2.Google Scholar
Poineau, J (2022) Dynamique analytique sur $\mathbf{Z}$ . II: Écart uniforme entre Lattès et conjecture de Bogomolov-Fu-Tschinkel. arXiv. https://arxiv.org/abs/2207.01574.Google Scholar
Ransford, T (1995) Potential Theory in the Complex Plane, volume 28 of London Mathematical Society Student Texts. Cambridge: Cambridge University Press.10.1017/CBO9780511623776CrossRefGoogle Scholar
Thuillier, A (2005) Théorie du Potentiel sur les Courbes en Géométrie Analytique Non Archimédienne. Applications à la Théorie d’Arakelov. PhD thesis, Université de Rennes 1. http://tel.archives-ouvertes.fr/tel-00010990/fr/.Google Scholar
Zhang, S (1995) Small points and adelic metrics. J. Algebr. Geom. 4(2), 281300.Google Scholar