1.
Beer, W., On Morita equivalence of nuclear *C*
^{∗} -algebras, J. Pure Appl. Algebra
26(3) (1982), 249–267.

3.
Blecher, D. P., A new approach to Hilbert *C*
^{∗} -modules, Math. Ann.
307(2) (1997), 253–290.

4.
Blecher, D. P. and Le Merdy, C., Operator Algebras and their Modules—An Operator Space Approach, London Mathematical Society Monographs. New Series, Volume 30 (The Clarendon Press, Oxford University Press, Oxford, 2004). Oxford Science Publications.

5.
Clare, P., Hilbert modules associated to parabolically induced representations, J. Operator Theory
69(2) (2013), 483–509.

6.
Clare, P., Crisp, T. and Higson, N., Parabolic induction and restriction via *C*
^{∗} -algebras and Hilbert *C*
^{∗} -modules, Compos. Math.
FirstView (2016), 1–33. 2.

7.
Crisp, T. and Higson, N., Parabolic induction, categories of representations and operator spaces, *to appear in Operator Algebras and their Applications: A Tribute to Richard V. Kadison*, Contemporary Mathematics, Volume 671, (American Mathematical Society, Providence, RI, 2016).

8.
Effros, E. G. and Ruan, Z.-J., Operator Spaces, London Mathematical Society Monographs. New Series, Volume 23 (The Clarendon Press, Oxford University Press, New York, 2000).

9.
Frank, M. and Kirchberg, E., On conditional expectations of finite index, J. Operator Theory
40(1) (1998), 87–111.

10.
Ghez, P., Lima, R. and Roberts, J. E.,
*W*
^{∗} -categories, Pacific J. Math.
120(1) (1985), 79–109.

11.
Kajiwara, T., Pinzari, C. and Watatani, Y., Jones index theory for Hilbert *C*
^{∗} -bimodules and its equivalence with conjugation theory, J. Funct. Anal.
215(1) (2004), 1–49.

12.
Lance, E. C., Hilbert *C*
^{∗} -modules, London Mathematical Society Lecture Note Series, Volume 210 (Cambridge University Press, Cambridge, 1995). A toolkit for operator algebraists.

13.
Mac Lane, S., Categories for the working mathematician, second edition, Graduate Texts in Mathematics, Volume 5 (Springer-Verlag, New York, 1998).

14.
Miličić, D., Topological representation of the group *C*
^{∗} -algebra of SL(2, *R*), Glas. Mat. Ser. III
6(26) (1971), 231–246.

15.
Morita, K., Adjoint pairs of functors and Frobenius extensions, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A
9 (1965), 40–71. 1965.

16.
Pavlov, A. A. and Troitskii, E. V., Quantization of branched coverings, Russ. J. Math. Phys.
18(3) (2011), 338–352.

17.
Renard, D., Représentations des groupes réductifs *p*-adiques, Cours Spécialisés [Specialized Courses], Volume 17 (Société Mathématique de France, Paris, 2010).