Skip to main content Accessibility help
×
×
Home

CARTAN SUBALGEBRAS IN DIMENSION DROP ALGEBRAS

  • Selçuk Barlak (a1) and Sven Raum (a2)

Abstract

We completely classify Cartan subalgebras of dimension drop algebras with coprime parameters. More generally, we classify Cartan subalgebras of arbitrary stabilised dimension drop algebras that are non-degenerate in the sense that the dimensions of their fibres in the endpoints are maximal. Conjugacy classes by an automorphism are parametrised by certain congruence classes of matrices over the natural numbers with prescribed row and column sums. In particular, each dimension drop algebra admits only finitely many non-degenerate Cartan subalgebras up to conjugacy. As a consequence of this parametrisation, we can provide examples of subhomogeneous $\text{C}^{\ast }$ -algebras with exactly $n$ Cartan subalgebras up to conjugacy. Moreover, we show that in many dimension drop algebras two Cartan subalgebras are conjugate if and only if their spectra are homeomorphic.

Copyright

References

Hide All
1. Anderson, J., Extensions, restrictions, and representations of states on C -algebras, Trans. Amer. Math. Soc. 249(2) (1979), 303329.
2. Barlak, S. and Li, X., Cartan subalgebras and the UCT problem, Adv. Math. 316 (2017), 748769.
3. Barlak, S. and Li., X., Cartan subalgebras and the UCT problem, II, preprint, 2017,arXiv:1704.04939.
4. Barlak, S. and Szabó, G., Problem sessions, in Oberwolfach Report, Volume 42, pp. 2627. (2017).
5. Berbec, M. and Vaes, S., W -superrigidity for group von Neumann algebras of left-right wreath products, Proc. Lond. Math. Soc. (3) 108(5) (2014), 11161152.
6. Blackadar, B., Operator Algebras. Theory of C -algebras and von Neumann Algebras, Encyclopaedia of Mathematical Sciences. Operator Algebras and Non-Commutative Geometry III, Volume 122 (Springer, Berlin-Heidelberg, 2006).
7. Canfield, E. R. and McKay, B. D., Asymptotic enumeration of integer matrices with large equal row and column sums, Combinatorica 30(6) (2010), 655680.
8. Connes, A. and Jones, V. F. R., Property (T) for von Neumann algebras, Bull. Lond. Math. Soc. 17 (1985), 5762.
9. Deeley, R. J., Putnam, I. F. and Strung, K. R., Constructing minimal homeomorphisms on point-like spaces and a dynamical presentation of the Jiang-Su algebra, J. Reine Angew. Math. 742 (2015), 241261.
10. Dixmier, J., Sous-anneaux abéliens maximaux dans les facteurs de type fini, Ann. of Math. (2) 59(2) (1954), 279286.
11. Elliott, G. A., Gong, G., Lin, H. and Niu, Z., On the classification of simple amenable C $^{\ast }$ -algebras with finite decomposition rank, II, preprint, 2015, arXiv:1507.03437.
12. Feldman, J. and Moore, C. C., Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc. 234 (1977), 289324.
13. Feldman, J. and Moore, C. C., Ergodic equivalence relations, cohomology, and von Neumann algebras. II, Trans. Amer. Math. Soc. 234 (1977), 325359.
14. Guihua, G., Lin, H. and Niu, Z., Classification of finite simple amenable ${\mathcal{Z}}$ -stable C $^{\ast }$ -algebras, preprint, 2015, arXiv:1501.00135.
15. Ioana, A., Popa, S. and Vaes, S., A class of superrigid group von Neumann algebras, Ann. of Math. (2) 178 (2013), 231286.
16. Jiang, X. and Su, H., On a simple unital projectionless C -algebra, Amer. J. Math. 121 (1999), 359413.
17. Katsura, T., A class of C -algebras generalizing both graph algebras and homeomorphism C -algebras IV, pure infiniteness, J. Funct. Anal. 254 (2008), 11611187.
18. Knudby, S., Raum, S., Thiel, H. and White, S., On C $^{\ast }$ -superrigidity of virtually abelian groups, in preparation.
19. Krogager, A. S. and Vaes, S., A class of II1 factors with exactly two crossed product decompositions, J. Math. Pures Appl. (9) 108(1) (2017), 88110.
20. Kumjian, A., On C -diagonals, Canad. J. Math. 38(4) (1986), 9691008.
21. Li., X., Constructing Cartan subalgebras in classifiable stably finite C $^{\ast }$ -algebras, preprint, 2018, arXiv:1802.01190.
22. Li, X., Continuous orbit equivalence rigidity, Ergodic Theory Dynam. Systems 38 (2018), 15431563.
23. Li, X., Dynamic characterizations of quasi-isometry, and applications to cohomology, Algebr. Geom. Topol. 18(6) (2018), 34773535.
24. Li, X. and Renault, J., Cartan subalgebras in C $^{\ast }$ -algebras. Existence and uniqueness, Trans. Amer. Math. Soc. (2017), to appear, doi:10.1090/trans/7654.
25. Matui, H. and Sato, Y., Strict comparison and 𝓩-absorption of nuclear C -algebras, Acta Math. 209 (2012), 179196.
26. Matui, H. and Sato, Y., Decomposition rank of UHF-absorbing C -algebras, Duke Math. J. 163 (2014), 26872708.
27. Ozawa, N. and Popa, S., On a class of II1 factors with at most one Cartan subalgebra, Ann. of Math. (2) 172(1) (2010), 713749.
28. Popa, S., Orthogonal pairs of ∗-subalgebras in finite von Neumann algebras, J. Operator Theory 9(2) (1983), 253268.
29. Popa, S., On a class of type II1 factors with Betti numbers invariants, Ann. of Math. (2) 163(3) (2006), 809899.
30. Popa, S., Strong rigidity of II1 factors arising from malleable actions of w-rigid groups. I, Invent. Math. 165(2) (2006), 369408.
31. Popa, S. and Vaes, S., Group measure space decomposition of II1 factors and W -superrigidity, Invent. Math. 182(2) (2010), 371417.
32. Popa, S. and Vaes, S., Unique Cartan decomposition for II1 factors arising from arbitrary actions of free groups, Acta Math. 212 (2014), 141198.
33. Popa, S. and Vaes, S., Unique Cartan decomposition for II1 factors arising from arbitrary actions of hyperbolic groups, J. Reine Angew. Math. 694 (2014), 215239.
34. Renault, J., A Groupoid Approach to C -algebras, Lecture Notes in Mathematics, Volume 793 (Springer, Berlin, 1980).
35. Renault, J., Cartan subalgebras in C -algebras, Irish Math. Soc. Bull. 61 (2008), 2963.
36. Sato, Y., White, S. and Winter, W., Nuclear dimension and 𝓩-stability, Invent. Math. 202 (2015), 893921.
37. Singer, I. M., Automorphisms of finite factors, Amer. J. Math. 77 (1955), 117133.
38. Spaas, P., Non-classification of Cartan subalgebras for a class of von Neumann algebras, Adv. Math. 332 (2018), 510552.
39. Spakula, J. and Willett, R., On rigidity of Roe algebras, Adv. Math. 249 (2013), 289310.
40. Speelman, A. and Vaes, S., A class of II1 factors with many non conjugate Cartan subalgebras, Adv. Math. 231(3–4) (2012), 22242251.
41. Spielberg, J., Graph-based models for Kirchberg algebras, J. Operator Theory 57 (2007), 347374.
42. Tikuisis, A., White, S. and Winter, W., Quasidiagonality of nuclear C -algebras, Ann. of Math. (2) 185 (2017), 229284.
43. White, S. and Willett, R., Cartan subalgebras in uniform Roe algebras, Groups Geom. Dyn. Preprint, 2018, arXiv:1808.04410, to appear.
44. Yeend, T., Topological higher-rank graphs and the C -algebras of topological 1-graphs, in Operator Theory, Operator Algebras, and Applications, Contemporary Mathematics, Volume 414, pp. 231244 (American Mathematical Society, Providence, RI, 2006).
45. Yeend, T., Groupoid models for the C -algebras of topological higher-rank graphs, J. Operator Theory 57 (2007), 95120.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Institute of Mathematics of Jussieu
  • ISSN: 1474-7480
  • EISSN: 1475-3030
  • URL: /core/journals/journal-of-the-institute-of-mathematics-of-jussieu
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed