Skip to main content


  • You Qi (a1)

A quantum Frobenius map a la Lusztig for $\mathfrak{s}\mathfrak{l}_{2}$ is categorified at a prime root of unity.

Hide All
1. Arkhipov, S., Bezrukavnikov, R. and Ginzburg, V., Quantum groups, the loop Grassmannian, and the Springer resolution, J. Amer. Math. Soc. 17(3) (2004), 595678.
2. Arkhipov, S. and Gaitsgory, D., Another realization of the category of modules over the small quantum group, Adv. Math. 173(1) (2003), 114143.
3. Brundan, J., On the definition of Kac–Moody 2-category, Math. Ann. 364(1–2) (2016), 353372.
4. Cautis, S. and Lauda, A. D., Implicit structure in 2-representations of quantum groups, Selecta Math. (N.S.) 21(1) (2015), 201244.
5. Drinfeld, V., DG quotients of DG categories, J. Algebra 272(2) (2004), 643691.
6. Elias, B. and Qi, Y., A categorification of quantum sl(2) at prime roots of unity, Adv. Math. 299 (2016), 863930.
7. Elias, B. and Qi, Y., A categorification of some small quantum groups II, Adv. Math. 288 (2016), 81151.
8. Ellis, A. P. and Qi, Y., The differential graded odd nilHecke algebra, Comm. Math. Phys. 344(1) (2016), 275331.
9. Kazhdan, D. and Lusztig, G., Tensor structures arising from affine Lie algebras IV, J. Amer. Math. Soc. 7(2) (1994), 383453.
10. Khovanov, M., Hopfological algebra and categorification at a root of unity: the first steps, J. Knot Theory Ramifications 25(3) (2016).
11. Khovanov, M. and Lauda, A. D., A diagrammatic approach to categorification of quantum groups I, Represent. Theory 13 (2009), 309347.
12. Khovanov, M. and Lauda, A. D., A categorification of quantum sl(n), Quantum Topol. 2(1) (2010), 192.
13. Khovanov, M. and Lauda, A. D., A diagrammatic approach to categorification of quantum groups II, Trans. Amer. Math. Soc. 363(5) (2011), 26852700.
14. Khovanov, M., Lauda, A. D., Mackaay, M. and Stošić, M., Extended graphical calculus for categorified quantum sl(2), Mem. Amer. Math. Soc. 219 (2012), vi + 87.
15. Khovanov, M. and Qi, Y., An approach to categorification of some small quantum groups, Quantum Topol. 6(2) (2015), 185311.
16. Lauda, A. D., A categorification of quantum sl(2), Adv. Math. 225(6) (2010), 33273424.
17. Lusztig, G., Modular representations and quantum groups, in Classical Groups and Related Topics (Beijing, 1987), Contemporary Mathematics, Volume 82, pp. 5977 (American Mathematical Society, Providence, RI, 1989).
18. Lusztig, G., Introduction to Quantum Groups, Progress in Mathematics, Volume 110 (Birkhäuser Boston Inc., Boston, MA, 1993).
19. McGerty, K., Hall algebras and quantum Frobenius, Duke Math. J. 154(1) (2010), 181206.
20. Qi, Y., Hopfological algebra, Compos. Math. 150(01) (2014), 145.
21. Rouquier, R., 2-Kac-Moody algebras, Preprint, 2008, arXiv:0812.5023.
22. Stošić, M., Indecomposable objects and Lusztig’s canonical basis, Math. Res. Lett. 22(1) (2015), 245278.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Institute of Mathematics of Jussieu
  • ISSN: 1474-7480
  • EISSN: 1475-3030
  • URL: /core/journals/journal-of-the-institute-of-mathematics-of-jussieu
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 11 *
Loading metrics...

Abstract views

Total abstract views: 104 *
Loading metrics...

* Views captured on Cambridge Core between 20th July 2017 - 19th March 2018. This data will be updated every 24 hours.