Skip to main content
×
Home
    • Aa
    • Aa

JOSEPH IDEALS AND LISSE MINIMAL $W$ -ALGEBRAS

  • Tomoyuki Arakawa (a1) and Anne Moreau (a2)
Abstract

We consider a lifting of Joseph ideals for the minimal nilpotent orbit closure to the setting of affine Kac–Moody algebras and find new examples of affine vertex algebras whose associated varieties are minimal nilpotent orbit closures. As an application we obtain a new family of lisse ( $C_{2}$ -cofinite) $W$ -algebras that are not coming from admissible representations of affine Kac–Moody algebras.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

D. Adamović , Vertex operator algebras and irreducibility of certain modules for affine Lie algebras, Math. Res. Lett. 4(6) (1997), 809821.

D. Adamović and A. Milas , Vertex operator algebras associated to modular invariant representations for A 1 (1) , Math. Res. Lett. 2(5) (1995), 563575.

T. Arakawa , Representation theory of superconformal algebras and the Kac–Roan–Wakimoto conjecture, Duke Math. J. 130(3) (2005), 435478.

T. Arakawa , A remark on the C 2 cofiniteness condition on vertex algebras, Math. Z. 270(1–2) (2012), 559575.

T. Arakawa , Rationality of Bershadsky–Polyakov vertex algebras, Comm. Math. Phys. 323(2) (2013), 627633.

T. Arakawa , Rationality of admissible affine vertex algebras in the category 𝓞, Duke Math. J. 165(1) (2016), 6793.

T. Arakawa , C. H. Lam and H. Yamada , Zhu’s algebra, C 2 -algebra and C 2 -cofiniteness of parafermion vertex operator algebras, Adv. Math. 264 (2014), 261295.

J. D. Axtell and K.-H. Lee , Vertex operator algebras associated to type G affine Lie algebras, J. Algebra 337 (2011), 195223.

C. Beem , M. Lemos , P. Liendo , W. Peelaers , L. Rastelli and B. C. van Rees , Infinite chiral symmetry in four dimensions, Comm. Math. Phys. 336(3) (2015), 13591433.

T. Creutzig and D. Ridout , Modular data and Verlinde formulae for fractional level WZW models I, Nuclear Phys. B 865(1) (2012), 83114.

T. Creutzig and D. Ridout , Modular data and Verlinde formulae for fractional level WZW models II, Nuclear Phys. B 875(2) (2013), 423458.

P. Deligne and B. Gross , On the exceptional series, and its descendants, C. R. Acad. Sci. Paris, Ser I 335(11) (2002), 877881.

A. De Sole and V. G. Kac , Finite vs affine W-algebras, Jpn. J. Math. 1(1) (2006), 137261.

E. Frenkel and D. Ben-Zvi , Vertex Algebras and Algebraic Curves, 2nd edn, Mathematical Surveys and Monographs, Volume 88 (American Mathematical Society, Providence, RI, 2004).

I. Frenkel and Y. Zhu , Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J. 66(1) (1992), 123168.

W. T. Gan and G. Savin , Uniqueness of Joseph ideal, Math. Res. Lett. 11(5–6) (2004), 589597.

Y.-Z. Huang , Rigidity and modularity of vertex tensor categories, Commun. Contemp. Math. 10(suppl. 1) (2008), 871911.

V. Kac , S.-S. Roan and M. Wakimoto , Quantum reduction for affine superalgebras, Comm. Math. Phys. 241(2–3) (2003), 307342.

V. Kac and M. Wakimoto , Modular invariant representations of infinite-dimensional Lie algebras and superalgebras, Proc. Natl Acad. Sci. USA 85(14) (1988), 49564960.

V. Kac and M. Wakimoto , Quantum reduction and representation theory of superconformal algebras, Adv. Math. 185(2) (2004), 400458.

V. Kac and M. Wakimoto , On rationality of W-algebras, Transform. Groups 13(3–4) (2008), 671713.

M. Miyamoto , Modular invariance of vertex operator algebras satisfying C 2 -cofiniteness, Duke Math. J. 122(1) (2004), 5191.

O. Perše , Vertex operator algebras associated to type B affine Lie algebras on admissible half-integer levels, J. Algebra 307(1) (2007), 215248.

O. Perše , Vertex operator algebra analogue of embedding of B 4 into F 4 , J. Pure Appl. Algebra 211(3) (2007), 702720.

A. Premet , Special transverse slices and their enveloping algebras, Adv. Math. 170(1) (2002), 155. With an appendix by Serge Skryabin.

Y. Zhu , Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9(1) (1996), 237302.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Institute of Mathematics of Jussieu
  • ISSN: 1474-7480
  • EISSN: 1475-3030
  • URL: /core/journals/journal-of-the-institute-of-mathematics-of-jussieu
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 12 *
Loading metrics...

Abstract views

Total abstract views: 116 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 29th June 2017. This data will be updated every 24 hours.